9794
According to previously reported works, the formation of the pyrazole ring should proceed by
initial nucleophilic attack of the less hindered and more nucleophilic primary nitrogen of the
hydrazine at the most electrophilic carbonyl group.20 The observed regioselectivity indicates that
the carbonyl group of the acylsilane moiety should be the most reactive. This is in accordance
with some physico-chemical data reported for the acylsilane function.2b,21 The steric hindrance
of the TMS group is balanced by a longer CꢀSi bond (1.926 A).2b Spectroscopic (IR, NMR) and
,
basicity studies21a about acylsilanes showed an enhanced polarity of the carbonyl group
compared to classical ketones due to the inductive effect of the silicon atom that stabilizes the
positive charge on the carbon of the CꢁO bond. The favoured reaction pathway leads to the
formation of the observed 3-trimethylsilyl pyrazoles.
This preliminary study on the synthesis of silylated pyrazoles illustrates the usefulness of
acylsilanes in carbohydrate and heterocyclic chemistry. This methodology could be applied to
the formation of different heterocycles and could lead to -C-nucleosides analogues.
L
Acknowledgements
We are grateful to H. Baillia for his precious help during the NMR studies.
References
1. Reviews: (a) Ricci, A.; Degl’Innocenti, A. Synthesis 1989, 647–660. (b) Page, P. C. B.; Klair, S. S.; Rosenthal, S.
Chem. Soc. Rev. 1990, 19, 147–195. (c) Cirillo, P. F.; Panek, J. S. Org. Prep. Proc. Int. 1992, 24, 555–582. (d)
Na`jera, C.; Yus, M. Org. Prep. Proc. Int. 1995, 27, 385–456.
2. Plantier-Royon, R.; Portella, C. Synlett 1994, 527–529. Bouillon, J.-P.; Portella, C. Tetrahedron Lett. 1997, 38,
6595–6598.
3. Plantier-Royon, R.; Portella, C. Tetrahedron Lett. 1994, 35, 6113–6114. Bouillon, J.-P.; Portella, C. Eur. J. Org.
Chem. 1999, 1571–1580. Bouillon, J.-P.; Saleur, D.; Portella, C. Tetrahedron Lett. 2000, 41, 321–324.
4. Habich, D.; Effenberger, F. Synthesis 1979, 841–876.
5. (a) Birkofer, L.; Franz, M. Chem. Ber. 1967, 100, 2681–2684. (b) Birkofer, L.; Franz, M. Chem. Ber. 1972, 105,
1759–1767. (c) Guillerm, G.; L’Honore´, A.; Veniard, L.; Pourcelot, G.; Benaim, J. Bull. Soc. Chim. Fr. 1973,
2739–2746. (d) Birkofer, L.; Franz, M. Top. Curr. Chem. 1980, 88, 33–88. (e) Maas, G.; Regitz, M.; Moll, U.;
Rahm, R.; Krebs, F.; Hector, R.; Stang, P. J.; Crittel, C. M.; Williamson, B. Tetrahedron 1992, 48, 3527–3540.
6. Aoyama, T.; Nakano, T.; Marumo, K.; Uno, Y.; Shioiri, T. Synthesis 1991, 1163–1167.
7. Aoyama, T.; Inoue, S.; Shioiri, T. Tetrahedron Lett. 1984, 25, 433–436.
8. (a) Effenberger, F.; Krebs, A. J. Org. Chem. 1984, 49, 4687–4695. (b) Ye, X.-S.; Wong, H. N. C. J. Chem. Soc.,
Chem. Commun. 1996, 339–340. (c) Song, Z. Z.; Ho, M. S.; Wong, H. N. C. J. Org. Chem. 1994, 59, 3917–3926.
9. For reviews about cyclic sulfates, see: Lohray, B. B. Synthesis 1992, 1035–1052; Byun, H.-S.; Bittman, R.
Tetrahedron 2000, 56, 7051–7091.
10. Whistler, R. L.; Lake, W. C. In Methods in Carbohydrate Chemistry; Whistler, R. W.; BeMiller, J. N., Eds.;
Academic Press: New York, 1972; Vol. VI, pp. 286–291.
11. Baker, D. C.; Horton, D.; Tindall, C. G. Carbohydr. Res. 1972, 24, 192–197.
12. Iacono, S.; Rasmussen, J. R. Org. Synth. Coll. VII. 1990, 34, 139–141.
13. (a) Staab, H. A.; Wendel, K. Angew. Chem. 1961, 73, 26. (b) Staab, H. A.; Wendel, K. Liebigs Ann. 1966, 694,
86–90. (c) Denmark, S. E. J. Org. Chem. 1981, 46, 3144–3147. (d) Sanders, W. J.; Kiessling, L. L. Tetrahedron
Lett. 1994, 35, 7335–7338.
14. Gao, Y.; Sharpless, B. K. J. Am. Chem. Soc. 1988, 110, 7538–7539.
15. Moon Kim, B.; Sharpless, B. K. Tetrahedron Lett. 1989, 30, 655–658.
16. Amor, C. M.; Banwell, M. G.; Gravatt, G. L. J. Org. Chem. 1987, 52, 4851–4855.