9812
primary amide was isolated (Table 1, entry 9). This direct transformation of a a-hydroxyacid
into a a-hydroxyamide is not very easy, usually requiring harsh conditions, Lewis acid catalysis
or protection/deprotection sequences.16 Protecting groups such as benzyl esters remained intact
as in the case of the reaction of Cbz–Tyr(Bn)–OH (Table 1, entry 12), and the reaction was
quantitative when Cbz- or base-sensitive Fmoc-protected amino acids were used (Table 1, entries
11 and 12). Even a hindered amino acid such as Boc-protected a-aminoisobutyric acid (Aib)
afforded a good yield of the corresponding pure amide (Table 1, entry 13).
In conclusion, the uronium salts HOTT (1) and TOTT (2) are convenient reagents for the
rapid preparation of primary amides under mild and simple reaction conditions. The possibility
of performing the reaction in a selective way, independently of the presence of other sensitive
functionalities, the usual high yields and the low cost of these coupling reagents make them
competitive compared to more expensive HOBt-based reagents. Further studies on other
applications of these peptide coupling reagents are underway.
In a typical procedure, DIEA (340 mL, 2 mmol) and NH4Cl (183 mg, 2 mmol) were added to
a solution of 1 or 2 (1.5 mmol) and of the corresponding acid (1 mmol) in DMF (4 mL) and
the mixture was stirred for 30 min at room temperature. Saturated aqueous NaCl (50 mL) was
added and the mixture was extracted with AcOEt (3×20 mL). The organics were washed with
2N HCl (2×10 mL), water (2×10 mL), saturated NaHCO3 (2×10 mL) and water (4×10 mL),
dried (Na2SO4), filtered and evaporated (15 torr) affording pure amides.
Acknowledgements
We thank the Direccio´n General de Ensen˜anza Superior e Investigacio´n Cient´ıfica (project no.
1FD97-0721) of the Ministerio de Educacio´n y Cultura (MEC) for financial support.
References
1. (a) March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, 1992; pp. 416–425. (b) In
Comprehensive Organic Synthesis, Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 6, pp. 381–417.
2. Brown, W. IDrugs 1999, 2, 1059–1068.
3. Sasaki, I.; Tozaki, H.; Matsumoto, K.; Ito, Y.; Fujita, T.; Murakami, M.; Muranishi, S.; Yamamoto, A. Biol.
Pharm. Bull. 1999, 22, 611–615.
4. Shimanaka, K.; Takahashi, Y.; Iinuma, H.; Naganawa, H.; Takeuchi, T. J. Antibiot. 1994, 47, 1153–1159.
5. Lau, R. C. M.; Rinehart, K. L. J. Am. Chem. Soc. 1995, 117, 7606–7610.
6. Burinsky, D. J.; Dunphy, R.; Oyler, A. R.; Shaw, C. J.; Cotter, M. L. J. Pharm. Sci. 1992, 81, 597–600.
7. Devroey, P.; Abyholm, T.; Diedrich, K.; De Jong, D.; Hillensjo, T.; Hedon, B.; Itskovitz-Eldor, J.; Kahn, J.;
Naether, O.; Olivennes, F.; Pavlou, S.; Tarlatzis, B.; Westergaard, L.; Mannaerts, B.; Van der Heijden, B.;
Bennink, H. C. Hum. Reprod. 1998, 13, 3023–3031.
8. Marner, F.-J.; Moore, R. E.; Hirotsu, K.; Clardy, J. J. Org. Chem. 1977, 42, 2815–2819.
9. Chen, S. T.; Wu, S. H.; Wang, K. T. Synthesis 1989, 37–38.
10. Pozdnev, V. F. Tetrahedron Lett. 1995, 36, 7115–7118.
11. EDAC: 1-ethyl-3-(3%-dimethylaminopropyl)carbodiimide hydrochloride. PyBOP: O-(benzotriazol-1-yl)-tris(pyrro-
lidino)phosphonium
hexafluorophosphate.
hexafluorophosphate.
HBTU:
O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium
12. Wang, W.; McMurray, J. S. Tetrahedron Lett. 1999, 40, 2501–2504.
13. Garner, P.; Anderson, J. T.; Dey, S.; Youngs, W. J.; Galat, K. J. Org. Chem. 1998, 63, 5732–5733.
14. Baile´n, M. A.; Chinchilla, R.; Dodsworth, D. J.; Na´jera, C. J. Org. Chem. 1999, 64, 8936–8939.