G. F. Ross et al. / Tetrahedron 58 '2002) 6127±6133
6133
2. Ugi, I. Angew. Chem. 1962, 74, 9; Angew. Chem., Int. Ed.
Engl. 1962, 1, 8.
with anisotropic thermal displacement parameters. A dis-
order ,82:18) of the phenyl group could be resolved and
re®ned. All hydrogen atoms were found in the difference
Fourier map and re®ned freelywith individual isotropic
thermal displacement parameters, except those of the
minor part of the disordered phenyl group, which were
placed in calculated positions ,riding model).
3. Ugi, I. Isonitrile Chemistry; Academic: New York, 1971.
4. Ugi, I.; Steinbrueckner, C. Chem. Ber. 1961, 94, 2802.
5. Ugi, I.; Marquarding, D.; Urban, R. Chemistry and Bio-
chemistry of Amino Acids, Peptides and Proteins; Weinstein,
B., Ed.; Marcel Dekker: New York, 1982; Vol. 6, p 245.
6. Ugi, I.; Offermann, K. Angew. Chem. 1963, 75, 917; Angew.
Chem., Int. Ed. Engl. 1963, 2, 624. Ugi, I.; Offermann, K.;
Herlinger, H. Angew. Chem. 1964, 76, 613; Angew. Chem.,
Int. Ed. Engl. 1964, 3, 656. Ugi, I.; Offermann, K.; Herlinger,
H.; Marquarding, D. Justus Liebigs Ann. Chem. 1967, 709, 1.
7. Ugi, I.; Kaufhold, G. Justus Liebigs Ann. Chem. 1967, 709, 11.
8. Bodanszky, M.; Ondetti, M. A. In Peptide Synthesis, Olah,
G. A., Ed.; Wiley: New York, 1966.
Re®nement. Full-matrix least squares re®nements were
P
carried out byminimizing
wꢀFo2 2 Fc22; converging at
R1 ,F, obs. data: 3692 I.2.0s,I))0.0267, wR2 ,F2, all
data)0.0640, goodness of ®t 1.024, 444 parameters,
maximum shift/err,0.001, residual electron density
Ê 23
Drmax0.14, Drmin20.14 e A . SIR-92, SHELXL-97,
and software for Nonius KappaCCD were used. Crystallo-
graphic data ,excluding structure factors) for the structure
reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary
publication no. CCDC-179-984. Copies of the data can be
obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK ,fax: 144-1223-336-033;
e-mail: deposit@ccdc.cam.ac.uk).
9. Wagner, G.; Herrmann, R. In Ferrocenes, Togni, A., Hayashi,
T., Eds.; VCH: Weinheim, 1995.
10. Demharter, A.; Ugi, I. J. Prakt. Chem. 1993, 335, 244.
11. Kunz, H.; Pfrengle, W. J. Am. Chem. Soc. 1988, 110, 651.
Kunz, H.; Pfrengle, W. Tetrahedron 1988, 44, 5487. Kunz,
H.; Pfrengle, W.; Sager, W. Tetrahedron Lett. 1989, 30, 4109.
Kunz, H.; Pfrengle, W.; RuÈck, K.; Sager, W. Synthesis 1991,
1039. Kunz, H.; Rueck, K. Angew. Chem. 1993, 105, 355.
12. Oertel, K.; Zech, G.; Kunz, H. Angew. Chem. 2000, 112, 1489;
Angew. Chem., Int. Ed. Engl. 2000, 39, 1431.
5.2.1. Compound 20. The O-deacylated product 19 ,0.5 g,
1.14 mmol) is dissolved in a mixture of 20 mL methanol and
10 mL tri¯uoroacetic acid. Subsequentlymercury,II)acetate
,0.36 g, 1.14 mmol) is added and stirred until the educt
has completelyreacted according to the TLC-control
,ethyl acetate) ,about 3 h). Then 150 mL of a saturated
sodium hydrogencarbonate solution and 50 mL of diethyl-
ether are prepared and the reaction mixture is gradually
added. After neutralizing this with sodium hydrogencarbo-
nate 2 g of sodium hydrogensul®de monohydrate are added.
As an alternative hydrogen sul®de can also be induced. The
organic phase is separated, the aqueous phase is extracted by
50 mL of diethylether. The combined organic phases are
®ltered byCelite, washed bysaturated sodium hydrogen-
carbonate solution and dried bymagnesiumsulfate. A color-
less solid mixture of 20 and 11 is received. This mixture is
treated with chloroform, the organic phase is ®ltered over
Celite and evaporated in vacuo. 0.2 g ,60%) of 20 as a
transparent solid are obtained.
13. Goebel, M.; Ugi, I. Synthesis 1991, 1095.
14. Lehnhoff, S. PhD Thesis, Technical Universityof Munich,
È
1994. Lehnhoff, S.; Goebel, M.; Karl, R. M.; Klosel, R.;
Ugi, I. Angew. Chem. 1995, 107, 1208; Angew. Chem., Int.
Ed. Engl. 1995, 34, 1104.
15. Zychlinski, A. v. PhD Thesis, Technical University of
Munich, 1998.
16. Ingles, D. L.; Whistler, R. L. J. Org. Chem. 1962, 27, 3896.
Alternatives: Adley, T. J.; Owen, L. N. Proc. Chem. Soc.
1961, 418. Schwarz, J. C. P.; Yule, K. C. Proc. Chem. Soc.
1961, 417.
17. Behrend, R.; Roth, P. Liebigs Ann. Chem. 1904, 331, 359.
Fletcher, H. G. Methods in Carbohydrate Chemistry; Whistler,
R. C., Wolfrom, M. L., Eds.; Academic: New York, 1963;
Vol. 2, p 234.
18. Birkofer, L.; Ritter, A. Angew. Chem. 1965, 77, 414; Angew.
Chem., Int. Ed. Engl. 1965, 4, 417. Paulsen, H.; Gyorgydeak,
Z.; Friedmann, M. Chem. Ber. 1974, 107, 1568; Chem. Ber.
1974, 107, 1590. Strumpel, M. K.; Buschmann, J.; Szilagyi,
L.; Gyorgydeak, Z. Carbohydr. Res. 1999, 318, 91.
19. Bayley, H.; Standring, D. N.; Knowles, J. R. Tetrahedron Lett.
1978, 3633.
1H NMR ,CDCl3): d7.79 ,d, 2H, 3J7.3 Hz); 7.51 ,t, 1H,
3
3J7.2 Hz); 7.43 ,t, 2H); 6.77 ,bd, 1H, J8.2 Hz); 6.00
,bs, 1H); 4.54 ,dt, 1H, 3J8.2, 5.8 Hz); 1.76±1.60 ,m,
3H); 1.35 ,s, 9H); 0.97 ,d, 6H). 13C NMR ,CDCl3): d
171.75; 167.06; 133.86; 131.21; 128.15; 127.12; 52.67;
51.02; 41.22; 28.48; 24.76; 22.84; 22.10. MS ,EI): 291
M1H; 313 M1Na; 329 M1K.
20. ,a) Ross, G. F. PhD Thesis, Technical Universityof Munich
2001. ,b) Ross, G. F.; Ugi, I. Can. J. Chem. 2001, 79 ,12),
1934.
21. Satchell, D. P. N.; Satchell, R. S. Chem. Soc. Rev. 1990, 19,
55. Luh, T. Y. Acc. Chem. Res. 1990, 24, 257.
22. Johnston, B. D.; Pinto, B. M. J. Org. Chem. 1998, 63, 5797.
23. Flack, H. D. Acta Crystallogr. 1983, A39, 876.
24. El-Wassimy, M. T. M.; Jorgensen, K. A.; Lawesson, S. O.
J. Chem. Soc. Perkin, Trans. 1 1983, 2201. Lucchetti, J.;
Krief, A. Synth. Commun. 1983, 13, 1153. Emerson, D. W.;
Wynberg, H. Tetrahedron Lett. 1971, 3445.
Acknowledgements
The authors would like to thank Mrs G. Weidner and
Dr B. Werner for their assistance in the preparation of this
manuscript.
25. Fraser-Reid, B.; Wu, E.; Udodong, U. E.; Ottoson, H. J. Org.
Chem. 1990, 55, 6068.
References
1. Ugi, I.; Meyr, R.; Fetzer, U.; Steinbruckner, C. Angew. Chem.
1959, 71, 386.