M. Aoyama, S. Hara / Tetrahedron 65 (2009) 3682–3687
3687
Tetrahedron Lett. 2004, 45, 2555; (c) Begum, S. A.; Terao, J.; Kambe, N. Chem.
Lett. 2007, 196; (d) Terao, J.; Begum, S. A.; Shinohara, Y.; Tomita, M.; Naitoh, Y.;
Kambe, N. Chem. Commun. 2007, 855; (e) Terao, J.; Todo, H.; Watabe, H.; Ikumi,
A.; Shinohara, Y.; Kambe, N. Pure Appl. Chem. 2008, 80, 941.
24 (350 mg) in 88% yield; clear oil. IR (neat): 3328, 2950, 2137, 1714,
1523, 1215 cmꢂ1. 1H NMR
7.39–7.32 (5H, m), 5.04 (2H, s), 4.72 (1H,
d
br s), 2.00 (2H, d, J¼5.6 Hz), 1.64–1.52 (8H, m), 1.13 (2H, s), 0.96 (s,
6H). 19F NMR
d
ꢂ138.16 (s, 1F). 13C NMR
d 154.26, 136.46, 128.52 (3C),
10. Methylation at tert-carbon of the adamantane was previously performed by the
reaction of MeMgX with Cl-, Br-, or I-adamantane at higher temperature (40–
85 ꢀC).11 But methylation of the adamantanes having functional group was not
reported.
11. (a) Osawa, E.; Majerski, Z.; Schleyer, P. R. J. Org. Chem. 1971, 36, 205; (b) Molle,
G.; Dubois, J. E.; Bauer, P. Can. J. Chem. 1987, 65, 2428; (c) Ohno, M.; Shimizu, K.;
Ishizaki, K.; Sasaki, T.; Eguchi, S. J. Org. Chem. 1988, 53, 729; (d) Kira, M.;
Akiyama, M.; Ichinose, M.; Sakurai, H. J. Am. Chem. Soc. 1989, 111, 8256.
12. Olah, G. A.; Farooq, O.; Morteza, S.; Farnia, F.; Olah, J. A. J. Am. Chem. Soc. 1988,
110, 2560.
13. Compound 5 was previously prepared by photochemical reaction of aceto-
phenone enolate with 1-iodoadamantane in moderate yield.14 However,
application of that method for the synthesis of 10 was unsuccessful.15
14. Borosky, G. L.; Pierini, A. B.; Rossi, R. A. J. Org. Chem. 1990, 55, 3705.
15. Lee, G. S.; Bashara, J. N.; Sabih, G.; Oganesyan, A.; Godjoian, G.; Duong, H. M.;
Marinez, E. R.; Gutie´rrez, C. G. Org. Lett. 2004, 6, 1705.
16. Friedel–Crafts adamantylation of aromatic compounds using 1-fluo-
roadamantane was previously studied by Olah et al., see: Olah, G. A.; Farooq, O.;
Morteza, S.; Farnia, F.; Wu, A. J. Org. Chem. 1990, 55, 1516.
17. As for the Friedel–Crafts adamantylation of arenes using bromo- or chloro-
adamantanes, see: (a) Perkins, R.; Bennett, S.; Bowering, E.; Burke, J.; Reid, K.;
Wall, D. Chem. Ind. 1980, 790; (b) Handa, I.; Bauer, L. J. Chem. Eng. Data 1984, 29,
223; (c) Hachiya, I.; Moriwaki, M.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1995, 68,
2053.
18. 1-Alkoxyadamantanes were previously prepared by oxidation–solvation of 1-
iodoadamantane,19 solvolysis of 1-adamantanyl chloroformate,20 or photo-in-
duced substitution reaction of haloadamantane.21 However, those methods are
not practical for the synthesis of alkoxyadamantanes because significant
amount of by-products was formed19,20 or chemical yields of the products were
not shown.21
128.10 (2C), 93.36 (d, J¼184.4 Hz), 66.14, 54.40 (d, J¼12.9 Hz), 49.20
(d, J¼1.9 Hz), 47.62 (2C, d, J¼16.8 Hz), 46.53 (2C), 45.23 (d, J¼19.0 Hz),
34.61 (2C, d, J¼10.3 Hz), 28.86 (2C, d, J¼1.4 Hz). HRMS (EI) calcd for
C20H26NO2F 331.19475, found 331.19439.
4.20. 3-Fluoro-5,7-dimethyl-1-adamantylammonium
acetate (25)
A hydrogenolysis operation was performed in an autoclave. A
mixture of acetic acid (2 mL), 10% Pd–C (0.2 g), and 24 (166 mg,
0.5 mmol) was stirred at room temperature under H2 atmosphere
(4 atm) for 24 h. The catalyst was removed by filtration and washed
with ether. The filtrate was concentrated under reduced pressure to
give a solid material. Recrystallization from hexane/CH2Cl2 gave
a pure 25 (106 mg) in 88% yield; a white solid: mp 132–133 ꢀC. IR
(KBr): 3430, 2951, 1559 cmꢂ1. 1H NMR
d 6.15 (3H, br s), 2.01 (3H, s),
1.82 (2H, d, J¼5.3 Hz),1.59–1.35 (8H, m),1.26–1.17 (2H, m), 0.98 (6H,
s).19F NMR
d
ꢂ138.98 (s,1F).13C NMR
d
178.23, 92.78 (d, J¼185.9 Hz),
53.56 (d, J¼12.0 Hz), 48.81, 47.24 (2C, d, J¼17.0 Hz), 46.36 (2C), 45.22
(d, J¼20.1 Hz), 34.74 (2C, d, J¼10.3 Hz), 28.69 (2C), 24.92. HRMS (EI)
calcd for C12H20NF (free amine) 197.1580, found 197.1582.
19. Davidson, R. I.; Kropp, P. J. J. Org. Chem. 1982, 47, 1904.
20. Moss, R. A.; Tian, J.; Sauers, R. R. Org. Lett. 2004, 6, 4293.
References and notes
21. Miller, J. B.; Salvador, J. R. J. Org. Chem. 2002, 67, 435.
22. (a) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.; Woodward, J.
K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc. 1996, 118, 5192; (b) Papeo, G.;
Posteri, H.; Vianello, P.; Varasi, M. Synthesis 2004, 2886; (c) Iranpoor, N.; Fir-
ouzabadi, H.; Akhlaghinia, B.; Nowrouzi, N. Tetrahedron Lett. 2004, 45, 3291; (d)
Rad, M. N. S.; Behrouz, S.; Khalafi-Nezhad, A. Tetrahedron Lett. 2007, 48, 3445.
23. (a) Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; Wiley: New
York, NY, 1991; (b) Welch, J. T. Tetrahedron 1987, 43, 3123.
24. Fluorinated analogs of amantadine were previously prepared, see: Jasys, V. J.;
Lombardo, F.; Appleton, T. A.; Bordner, J.; Ziliox, M.; Volkmann, R. A. J. Am.
Chem. Soc. 2000, 122, 466.
25. Lewis, F. D.; Johnson, R. W.; Kory, D. R. J. Am. Chem. Soc. 1974, 96, 6100.
26. Ng, S. Aust. J. Chem. 1973, 26, 2303.
27. Meyer, W. P.; Martin, J. C. J. Am. Chem. Soc. 1976, 98, 1231.
28. Nyfeler, E.; Renaud, P. Org. Lett. 2008, 10, 985.
29. As four tert-carbons of the adamantane skeleton were substituted by different
atoms, the compounds 3 is optically active (racemic)24 and compounds 21 is
a mixture of two diastereomers.30 Therefore, in 13C NMR of 21, the signals of
two diastereomers appeared separately.
1. (a) Wishnok, J. S. J. Chem. Educ. 1973, 50, 780; (b) Spasov, A. A.; Khamidova, T. V.;
Bugaeva, L. I.; Morozov, I. S. Pharm. Chem. J. 2000, 34, 1; (c) Sonkusare, S. K.;
Kaul, C. L.; Ramarao, K. P. Pharmacol. Res. 2005, 51, 1.
2. (a) Ohfuji, T.; Ogawa, T.; Kuhara, K.; Sasago, M. J. Vac. Sci. Technol., B 1996, 14,
4203; (b) Su, X.; Jing, X. J. Appl. Polym. Sci. 2007, 106, 737 and the references are
cited therein.
3. (a) Olah, G. A.; Gupta, B. G. B. J. Org. Chem. 1980, 45, 3532; (b) Olah, G. A.; Wang,
Q. Synthesis 1992, 1090; (c) Krasutsky, A. P.; Kuehl, C. J.; Zhdankin, V. V. Synlett
1995, 1081; (d) Olah, G. A.; Ramaiah, P.; Rao, C. B.; Sandford, G.; Golam, R.;
Trivedi, N. J.; Olah, J. A. J. Am. Chem. Soc. 1993, 115, 7246; (e) Sorochinsky, A. E.;
Petrenko, A. A.; Soloshonok, V. A.; Resnati, G. Tetrahedron 1997, 53, 5995; (f)
Oshita, M.; Chatani, N. Org. Lett. 2004, 6, 4323; (g) Wanka, L.; Cabrele, C.; Va-
nejews, M.; Schreiner, P. R. Eur. J. Org. Chem. 2007, 1474.
4. (a) Ohno, M.; Ishizaki, K.; Eguchi, S. J. Org. Chem. 1988, 53, 1285; (b) Schreiner, P.
R.; Lauenstein, O.; Butova, E. D.; Gunchenko, P. A.; Kolomitsin, I. V.; Wittkopp,
A.; Feder, G.; Fokin, A. A. Chem.dEur. J. 2001, 7, 4997.
5. Sasaki, T.; Nakanishi, A.; Ohno, M. Chem. Pharm. Bull. 1982, 30, 2051.
6. Bra¨se, S.; Waegell, B.; Meijere, A. Synthesis 1998, 148.
30. (a) Applequist, J.; Rivers, P.; Applequist, D. E. J. Am. Chem. Soc. 1969, 91, 5705; (b)
Schreiner, P. R.; Fokin, A. A.; Lauenstein, O.; Okamoto, Y.; Wakita, T.; Rinder-
spacher, C.; Robinson, G. H.; Vohs, J. K.; Campana, C. F. J. Am. Chem. Soc. 2002,
124, 13348.
7. Aoyama, M.; Fukuhara, T.; Hara, S. J. Org. Chem. 2008, 73, 4186.
8. Hara, S.; Aoyama, M. Synthesis 2008, 2510.
9. (a) Ooi, T.; Uraguchi, D.; Kagoshima, N.; Maruoka, K. Tetrahedron Lett. 1997, 38,
5679; (b) Hirano, K.; Fujita, K.; Yorimitsu, H.; Shinokubo, H.; Oshima, K.