2564 J. Am. Chem. Soc., Vol. 120, No. 11, 1998
Thalladi et al.
These efforts have been generally based on the dipolar paradigm
wherein electron donating and withdrawing substituent groups
interact via conjugated π-electron reservoirs such as a phenyl
ring (e.g., p-nitroaniline, pNA and analogues),8 two phenyl rings
(stilbene and azo-dye derivatives),9 or more elongated carotenoid
push-pull structures.10,11
they are therefore not the best-suited for NLO-type applications.
More symmetrical molecules organized in more isotropic yet
noncentrosymmetric arrays are expected to alleviate such
problems. The traditional design of NLO active materials has
concentrated exclusively on dipolar molecules and has thus
ignored a wealth of possibilities that could arise from two- and
three-dimensional self-assembly. Diversified investigations of
more isotropic molecules with attached octupolar and multipolar
nonlinearities have been proposed.16-18 For example, 2,4,6-
triamino-1,3,5-trinitrobenzene (TATB) has attracted much at-
tention as the trigonal analogue of pNA.16a,b,19 While octupolar
nonlinearity has been experimentally demonstrated in molecular
systems,16c,d its demonstration in supramolecular, that is crystal-
line, systems has remained a challenge.20
In polar molecule-based crystal engineering of NLO materials,
the main aim is to ensure that a noncentrosymmetric assembly
of molecular dipoles is established. This is a prerequisite for
quadratic NLO effects5 such as second harmonic generation
(SHG) and for the cascading of such effects for cubic molecular
dephasing.12 A useful hierarchic classification of molecular
crystal classes with respect to their quadratic nonlinear efficiency
was established in the early 1980s and has served as a guideline
for NLO crystals engineered with polar quasi one-dimensional
molecules with a single dominant molecular hyperpolarizability
coefficient along the charge-transfer axis.13 At the magic angle
of 54.7°, the inclination of the molecule within the unit cell
provides optimal tradeoff between birefringence phase-matching
constraints and enhancement of the effective molecular coef-
ficient, as exemplified by the well-known substance N-(4-
nitrophenyl)-L-prolinol (NPP).7,14 However, the significant
ground-state dipole moment in pNA-like dipolar molecules has
been recognized as being detrimental toward the establishment
of a noncentrosymmetric structure because dipole-dipole
interactions tend to favor antiparallel stacking of neighboring
molecular units. Reducing the ground state dipole moment
while preserving optical nonlinearity had been a long-sought
goal leading eventually to the push-pull structure of 3-methyl-
4-nitropyridine-1-oxide (POM).15
A typical symmetry pattern that leads to crystalline octupolar
nonlinearity is the trigonal network A constituted with trigonal
molecules (Figure 1). This two-dimensional network is non-
centrosymmetric and arises from specific attractive interactions
between structural elements that are schematically represented
by bold and dashed lines.16a The main task in the crystal
engineering of such a structure lies therefore in identifying the
complementary elements and eventually a molecule that contains
these elements in appropriate locations. This is not trivial. The
carry-over of molecular symmetry into crystal symmetry (or
even pseudosymmetry) is not expected from Kitaigorodskii’s
theory of close-packing,21 and a majority of trigonal molecules
routinely adopt close-packed crystal structures of low symmetry.
This is so because there is little reason to expect that the
symmetry of the supramolecular web surrounding any molecule
should conform to the internal symmetry of the molecule itself.22
Thus, the key to successfully extending molecular symmetry
into the crystal lies in identifying a design strategy whereby
the patterns of supramolecular interactions possess the (high)
symmetry of the molecule. Of course, it is also necessary to
ensure that the noncentrosymmetry of the two-dimensional
network shown in A extends to the third dimension in the
crystal, that is to bulk noncentrosymmetry. However, this is
not the primary aim of this paper which concentrates on two-
The high anisotropy in these optimized structures13 (pNA,
NPP, POM) does not provide polarization independence, and
(5) (a) Boyd, R. W. Nonlinear Optics; Academic Press: New York, 1992.
(b) NoVel Optical Materials and Applications; Khoo, I.-C.; Simoni, F.;
Umeton, C. Eds.; John Wiley: New York, 1997. (c) Nonlinear Optical
Properties of Organic Molecules and Crystals; Chemla, D. S., Zyss, J.,
Eds.; Academic Press: Boston, 1987. (d) Molecular Nonlinear Optics:
Materials, Physics and DeVices; Zyss, J., Ed.; Academic Press: Boston,
1994. (e) Zyss, J. J. Phys. D. Appl. Phys. 1993, B198, 26.
(6) (a) Bosshard, C.; Sutter, P.; Preˆtre, P.; Hulliger, J, Flo¨rsheimer, M.;
Kaatz, P.; Gu¨nter, P. Organic Nonlinear Optical Materials; Gordon and
Breach: Basel, 1995. (b) Zyss, J. J. Mol. Electron. 1985, 1, 25.
(7) (a) Josse, D.; Don, S. X.; Zyss, J.; Andreazza, P.; Pe´rigaud, A. Appl.
Phys. Lett. 1992, 61, 121. (b) Don, S. X.; Josse, D.; Zyss, J. J. Opt. Soc.
Am. B. 1993, 10, 1708. (c) Kodja, S.; Josse, D.; Samuel, I. D. W.; Zyss, J.
Appl. Phys. Lett. 1995, 67, 3841.
(8) Oudar, J. L.; Hierle, R. J. Appl. Phys. 1977, 48, 2699.
(9) (a) Wang, Y.; Tam, W.; Stevenson, S. H.; Clement, R. A.; Calabrese,
J. C. Chem. Phys. Lett. 1989, 148, 136.
(16) (a) Ledoux, I.; Zyss, J.; Siegel, J.; Brienne, J.; Lehn, J.-M. Chem.
Phys. Lett. 1990, 172, 440. (b) Zyss, J.; Dhenaut, C.; Chau Van, T.; Ledoux,
I. Chem. Phys. Lett. 1993, 206, 409. (c) Dhenaut, C.; Ledoux, I.; Samuel,
I. D. W.; Zyss, J.; Bourgault, M.; Bozec, H. L. Nature 1995, 374, 339. (d)
Zyss, J.; Ledoux, I. Chem. ReV. 1994, 94, 77.
(17) (a) Zyss, J. Nonlinear Opt. 1991, 1, 3. (b) Zyss, J. J. Chem. Phys.
1993, 98, 6583. (c) Zyss, J. In Nonlinear Optics: Fundamentals, Materials
and DeVices; Miyat, S., Ed.; North-Holland: Amsterdam, 1992; pp 33-
48. (d) Zyss, J.; Ledoux, I.; Nicoud, J.-F. In Molecular Nonlinear Optics:
Materials, Physics and DeVices; Zyss, J., Ed.; Academic Press: Boston,
1994. (e) Bre´das, J.-L.; Meyers, F.; Pierce, B.; Zyss, J. J. Am. Chem. Soc.
1992, 114, 4928. (f) Joffre, M.; Yaron, D.; Silbey, R. J.; Zyss. J. J. Chem.
Phys. 1992, 97, 5607. (g) Brasselet, S.; Zyss, J. J. Nonlinear Opt. Phys.
Mater. 1996, 5, 671.
(18) Brasselet, S.; Zyss, J. J. Opt. Soc. Am. B 1998, in press.
(19) An early crystal structure report on the TATB showed it to belong
to the centrosymmetric space group, P1h (Cady, H. H.; Larson, A. C. Acta
Crystallogr. 1965, 18, 485). Potential energy calculations were performed
on the TATB crystal, and two energetically similar noncentrosymmetric
(P1) crystal structures were proposed (Filippini, G.; Gavezzotti, A. Chem.
Phys. Lett. 1994, 231, 86). A recent electron diffraction study of thin
hexagonal crystals of TATB revealed that they belong to the noncentrosym-
metric space group, P31 (Voigt-Martin, I. G.; Li, G.; Yakimanski, A.; Schulz,
G.; Wolff, J. J. Am. Chem. Soc. 1996, 118, 12830).
(10) Barzoukas, M.; Blanchard-Desce, M.; Josse, D.; Lehn, J.-M.; Zyss,
J. Chem. Phys. 1989, 133, 323.
(11) The long rodlike structures (ref 10) are less prone to crystallization
and are useful candidates for poling in amorphous polymer structures. (a)
Singer, K. D.; Andrews, J. H. In Molecular Nonlinear Optics: Materials,
Physics and DeVices; Zyss, J., Ed.; Academic Press: Boston, 1994. (b)
Pinsard-Levenson, R.; Liang, J.; Toussaere, E.; Bouadma, N.; Carenco, A.;
Zyss, J.; Froyer, G.; Guilbert, M.; Pelous, Y.; Bosc, D. Nonlinear Opt. 1993,
4, 233. (c) Michelotti, F.; Toussaere, E.; Pinsard-Levenson, R.; Liang, J.;
Zyss, J. J. Appl. Phys. 1996, 3, 80.
(12) (a) Stegeman, G. I.; Sheik-Bahae, M.; VanStryland, E.; Assanto,
G. Opt. Lett. 1993, 18, 13. (b) Kim, D. Y.; Toruellas, W. E.; Kang, J.;
Brosshard, C.; Stegeman, G. I.; Vidakovic, P.; Zyss, J.; Moerner, W. E.;
Twieg, R.; Bjorklund, G. Opt. Lett. 1994, 19, 868.
(13) Zyss, J.; Oudar, J. L. Phys. ReV. A 1982, 26, 2028.
(14) (a) Zyss, J.; Nicoud, J. F.; Coquillay, M. J. Chem. Phys. 1984, 81,
4160. (b) Ledoux, I.; Lepers, C.; Badan, J.; Pe´rigaud, A.; Zyss, J. Opt.
Commun. 1990, 80, 149. (c) Andreazza, P.; Josse, D.; Le Faucheux, F.;
Robert, M. C.; Zyss, J. Phys. ReV. B 1992, 45, 7640.
(15) (a) Zyss, J.; Chemla, D. S.; Nicoud, J. F. J. Chem. Phys. 1981, 74,
4800. (b) Zyss, J.; Ledoux, I.; Hierle, R.; Raj, R.; Oudar, J. L. IEEE J.
Quantum Electron. 1985, QE-21, 1286. (c) Andreazza, P.; Le Faucheux,
F.; Robert, M. C.; Josse, D.; Zyss, J. J. Appl. Phys. 1990, 68, 8. (d) Josse,
D.; Hierle, R.; Ledoux, I.; Zyss, J. Appl. Phys. Lett. 1988, 53, 23.
(20) It may be noted that statistical octupolar macroscopic order has
recently been demonstrated in host-guest polymer structures by a new, all
optical poling technique. Fiorini, C.; Charra, F.; Nunzi, J. M.; Samuel, J.
D. W.; Zyss, J. Optics Lett. 1995, 20, 2469.
(21) Kitaigorodskii, A. I. Molecular Crystals and Molecules; Academic
Press: New York, 1973.
(22) This distinction between molecular and crystal symmetry has been
appreciated since the earliest days of crystallography. See, for example:
Astbury, W. T.; Bragg, W. H. Ann. Rep. Prog. Chem. 1923, 20, 233.