B. Song et al. / Tetrahedron Letters 48 (2007) 8982–8986
8985
Lett. 1999, 40; (d) Wong, M.-K.; Yu, C.-W.; Yuen, W.-H.;
Yang, D. J. Org. Chem. 2001, 66, 3606–3609.
O
Cs2CO3 (1.1 equiv.)
-Bu4NBr (0.5 equiv.)
CN
n
N
NH
2. (a) Vecchietti, V.; Torre, A. D.; Lauria, F.; Castellino, S.;
Monti, G.; Trane, F.; Carneri, I. D. Eur. J. Med. Chem.
1974, 9, 76–80; (b) Scott, M. K.; Baxter, E. W.; Bennett, D.
J.; Boyd, R. E.; Blum, P. S.; Codd, E. E.; Kukla, J.; Malloy,
E.; Maryanoff, B. E.; Maryanoff, C. A.; Ortegon, M. E.;
Rasmussen, C. R.; Reitz, A. B.; Renzi, M. J.; Schwender,
C. F.; Shank, R. P.; Sherill, R. G.; Vaught, J. L.; Villani, F.
J.; Yim, N. J. Med. Chem. 1995, 38, 4198–4210.
DMF, Air, 8.5 h, 120 oC
O
O
3
1n
Scheme 2. Reaction of 1n under optimized conditions.
R1
3. (a) Swindells, D. C. N.; White, P. S.; Findlay, J. A. Can. J.
Chem. 1978, 56, 2491–2492; (b) Tanaka, H.; Kuroda, A.;
Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.;
Hashimoto, M.; Taga, T. J. Am. Chem. Soc. 1987, 109,
5031–5033; (c) Bierer, B. E.; Mattila, P. S.; Standaert, R.
F.; Herzenberg, L. A.; Burakoff, S. J.; Crabtree, G.;
Schreiber, S. L. Proc. Natl. Acad. Sci. U.S.A. 1990, 87,
9231–9235; (d) Schreiber, S. L. Science 1991, 251, 283–287;
(e) Stocks, M. J.; Harrison, R. P.; Teague, S. J. Tetrahedron
Lett. 1995, 36, 6555–6558; (f) Hamilton, G. S.; Steiner, J. P.
J. Med. Chem. 1998, 41, 5119–5143; (g) Guo, C. X.; Reich,
S.; Showalter, R.; Villafranca, E.; Dong, L. Tetrahedron
Lett. 2000, 41, 5307–5311; (h) Hudack, R. A., Jr.; Barta, N.
S.; Guo, C. X.; Deal, J.; Dong, L. M.; Fay, L. K.;
Caprathe, B.; Chatterjee, A.; Vanderpool, D.; Bigge, C.;
Showalter, R.; Bender, S.; Augelli-Szafran, C. E.; Lunney,
E.; Hou, X. J. J. Med. Chem. 2006, 49, 1202–1206.
4. (a) Ocain, T. D.; Rich, D. H. J. Med. Chem. 1992, 35, 451–
456; (b) Nakamura, M.; Inoue, J.; Yamada, T. Bioorg.
Med. Chem. Lett. 2000, 10, 2807–2810; (c) Papanikos, A.;
Rademann, J.; Meldal, M. J. Am. Chem. Soc. 2001, 123,
2176–2181; (d) Hua, R. M.; Takeda, H. A.; Abe, Y.;
Tanaka, M. J. Org. Chem. 2004, 69, 974–976.
5. (a) Sheha, M. M.; Mahfouz, N. M.; Hassan, H. Y.;
Youssef, A. F.; Mimoto, T.; Kiso, Y. Eur. J. Med. Chem.
2000, 35, 887–984; (b) Kitagawa, O.; Takahashi, M.;
Kohriyama, M.; Taguchi, T. J. Org. Chem. 2003, 68,
9851–9853; (c) Han, W.; Hu, Z. L.; Jiang, X. J.; Wasser-
man, Z. R.; Decicco, C. P. Bioorg. Med. Chem. Lett. 2003,
13, 1111–1114; (d) Radosevich, A. T.; Musich, C.; Toste,
F. D. J. Am. Chem. Soc. 2005, 127, 1090–1091.
6. (a) Takahashi, K.; Shibasaki, K.; Ogura, K.; Iida, H.
Chem. Lett. 1983, 11, 859–862; (b) Yang, Z.; Zhang, Z. X.;
Meanwell, N. A.; Kadow, J. F.; Wang, T. Org. Lett. 2002,
4, 1103–1105; (c) Zhu, J. L.; Wong, H.; Zhang, Z. W.; Yin,
Z. W.; Kadow, J. F.; Meanwell, N. A.; Wang, T.
Tetrahedron Lett. 2005, 46, 3587–3589.
N
H2O
O2
Ar
R2
O
A
BH
B
R1
N
OH
Ar
R2
O
O
1
O
O
O
R1
R1
N
H
Ar
N
Ar
R2
R2
O
2
B
Scheme 3. Plausible mechanism of a-oxidation reaction.
In summary, we describe here a novel cesium carbonate
promoted aerobic oxidation reaction in the presence of
tetra-n-butylammonium bromide. Compared with other
reported methods, the current approach provides a very
simple and convenient route to a-keto amides from eas-
ily available arylacetamides in good to high yields, and
could potentially be carried out in industrial scales. This
reaction avoids using toxic reagents and harsh condi-
tions and could proceed catalytically.21 The scope of this
reaction and its applications for bioactive compounds
are currently under investigation in our laboratory and
will be reported in due course.
Acknowledgments
Financial support from the National Natural Science
Foundation of China (No. 20672071), Shanghai Pujiang
Program (No. 07pj14043) and Shanghai Municipal
Education Commission (No. 06AZ095) is gratefully
acknowledged. The authors thank Professor Qin Zhang
and Ms. Weiwei Rao for spectral support.
7. Sassatelli, M.; Bouchikhi, F.; Messaoudi, S.; Anizon, F.;
Debiton, E.; Barthomeuf, C.; Prudhomme, M.; Moreau,
P. Eur. J. Med. Chem. 2006, 41, 88–100.
8. (a) Buu-Hoi, N. P.; Saint-Ruf, G.; Bourgeade, J. C. J.
Heterocycl. Chem. 1968, 5, 545–546; (b) Chen, Y. H.;
Zhang, Y. H.; Zhang, H. J.; Liu, D. Z.; Gu, M.; Li, J. Y.;
Wu, F.; Zhu, X. Z.; Li, J.; Nan, F. J. J. Med. Chem. 2006,
49, 1613–1623.
9. Zaleska, B.; Lis, S. Synth. Commun. 2001, 31, 189–197.
10. Yoshifuji, S.; Arakawa, Y. Chem. Pharm. Bull. 1989, 37,
3380–3381.
11. (a) Wasserman, H. H.; Ives, J. L. J. Org. Chem. 1985, 50,
3573–3580; (b) Ling, K. Q.; Ji, G.; Cai, H.; Xu, J. H.
Tetrahedron Lett. 1998, 39, 2381–2384; (c) Ling, K. Q.;
Ye, J. H.; Chen, X. Y.; M, D. J.; Xu, J. H. Tetrahedron
1999, 55, 9185–9204.
Supplementary data
Supplementary data associated with this article can be
12. (a) Ozawa, F.; Soyama, H.; Yanagihara, H.; Aoyama, I.;
Takino, H.; Izawa, K.; Yamamoto, T.; Yamamoto, A. J.
Am. Chem. Soc. 1985, 107, 3235–3245; (b) Huang, L.;
Ozawa, F.; Yamamoto, A. Organometallics 1990, 9, 2603–
2611; (c) Uozumi, Y.; Arii, T.; Watanabe, T. J. Org.
Chem. 2001, 66, 5272–5274.
References and notes
1. (a) Ozawa, F.; Soyama, H.; Yamamoto, T.; Yamamoto,
A. Tetrahedron Lett. 1982, 23, 3383–3386; (b) Mehdi, S.
Bioorg. Chem. 1993, 21, 249–259; (c) Couve-Bonnaire, S.;
Carpentier, J.-F.; Castanet, Y.; Mortreux, A. Tetrahedron