Journal of the American Chemical Society
Article
(14) Because of the second-order THF dependence and one-half-
order NaDA dependence on the NaDA-mediated decomposition in
THF, high concentrations of NaDA in THF should on a percentage
basis decompose marginally more slowly.
(15) Kofron, W. G.; Baclawski, L. M. A Convenient Method for
Estimation of Alkyllithium Concentrations. J. Org. Chem. 1976, 41,
1879.
(16) We cannot rule out the possibility that the C- and O-alkylation
products from BrCH2COO-t-Bu stem from enolization and attack on a
transiently formed carbene. In fact, sequential addition of
BrCH2COO-t-Bu followed by pseudoephedrine amide 1 to excess
NaDA afforded a seemingly similar product distribution.
(26) Casado, J.; Lopez-Quintela, M. A.; Lorenzo-Barral, F. M. The
Initial Rate Method in Chemical Kinetics: Evaluation and
Experimental Illustration. J. Chem. Educ. 1986, 63, 450.
(27) The rate law provides the stoichiometry of the transition
structure relative to that of the reactants: The rate law provides the
stoichiometry of the transition structure relative to that of the
reactants: Edwards, J. O.; Greene, E. F.; Ross, J. From Stoichiometry
and Rate Law to Mechanism. J. Chem. Educ. 1968, 45, 381.
(28) Semilog plots, although often visually retrievable, can hide
subtleties such as nonzero intercepts and impose inadvertent nonlinear
weighting of the data.
(29) We define the idealized rate law as that obtained by rounding
the observed reaction orders to the nearest rational order.
(30) A number of general-purpose reviews on determining reaction
mechanism: (a) Meek, S. J.; Pitman, C. L.; Miller, A. J. M. Deducing
Reaction Mechanism: A Guide for Students, Researchers, and
Instructors. J. Chem. Educ. 2016, 93, 275. (b) Simmons, E. M.;
Hartwig, J. F. On the Interpretation of Deuterium Kinetic Isotope
Effects in C-H Bond Functionalizations by Transition Metal
Complexes. Angew. Chem., Int. Ed. 2012, 51, 3066. (c) Collum, D.
B.; McNeil, A. J.; Ramírez, A. Lithium Diisopropylamide: Solution
Kinetics and Implications for Organic Synthesis. Angew. Chem., Int. Ed.
2007, 46, 3002. (d) Algera, R. F.; Gupta, L.; Hoepker, A. C.; Liang, J.;
Ma, Y.; Singh, K. J.; Collum, D. B. Lithium Diisopropylamide: Non-
Equilibrium Kinetics and Lessons Learned about Rate Limitation. J.
Org. Chem. 2017, 82, 4513.
(17) Langer, P.; Freiberg, W. Cyclization Reactions of Dianions in
Organic Synthesis. Chem. Rev. 2004, 104, 4125.
(18) (a) Renny, J. S.; Tomasevich, L. L.; Tallmadge, E. H.; Collum,
D. B. Method of Continuous Variations: Applications of Job Plots to
the Study of Molecular Associations in Organometallic Chemistry.
Angew. Chem., Int. Ed. 2013, 52, 11998. (b) Liou, L. R.; McNeil, A. J.;
Ramírez, A.; Toombes, G. E. S.; Gruver, J. M.; Collum, D. B. Lithium
Enolates of Simple Ketones: Structure Determination Using the
Method of Continuous Variation. J. Am. Chem. Soc. 2008, 130, 4859.
(19) (a) Friebolin, H. Basic One- and Two-Dimensional NMR
Spectroscopy; Wiley VCH: Weinheim, 2010. (b) Claridge, T. D. W.
High-Resolution NMR Techniques in Organic Chemistry, 2nd ed.;
Elsevier: Amsterdam, 2009.
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.,
Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels,
A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,
S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Gill, A.;
Nanayakkara, C.; Gonzalez, M.; Challacombe, P. M. W.; Johnson, B.;
Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 09, revision A.02; Gaussian,
Inc.: Wallingford, CT, 2009.
(21) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals
for Main Group Thermochemistry, Thermochemical Kinetics, Non-
covalent Interactions, Excited States, and Transition Elements: Two
New Functionals and Systematic Testing of Four M06-Class
Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120,
215.
(31) Williard, P. G. unpublished.
(32) (a) Rong, Y.; Palmer, J. H.; Parkin, G. Benzannulated tris(2-
Mercapto-1-imidazolyl)-hydroborato Ligands: Tetradentate κ4-S3H
Binding and Access to Monomeric Monovalent Thallium in an [S3]
Coordination Environment. Dalton Trans 2014, 43, 1397. (b) Peng,
H.; Zhang, Z.; Qi, R.; Yao, Y.; Zhang, Y.; Shen, Q.; Cheng, Y.
Synthesis, Reactivity, and Characterization of Sodium and Rare-Earth
Metal Complexes Bearing a Dianionic N-Aryloxo-Functionalized r-
Ketoiminate Ligand. Inorg. Chem. 2008, 47, 9828. (c) Bachmann, J.;
Hodgkiss, J. M.; Young, E. R.; Nocera, D. G. Ground- and Excited-
State Reactivity of Iron Porphyrinogens. Inorg. Chem. 2007, 46, 607.
(33) Representative examples of structurally characterized bridging
THF ligands: (a) Chivers, T.; Fedorchuk, C.; Parvez, M. Synthetic and
Structural Investigations of Monomeric Dilithium Boraamidinates and
Bidentate NBNCN Ligands with Bulky N-Bonded Groups. Inorg.
Chem. 2004, 43, 2643. (b) Briand, G. G.; Chivers, T.; Parvez, M. A
Novel Route to Chalcogenides of Heavy Pnicogens: Synthesis and X-
ray Structure of {(THF)3Li2[PhAs(Se)(NBut)2]}. J. Chem. Soc., Dalton
Trans. 2002, 3785.
(34) Hoepker, A. C.; Collum, D. B. Computational Studies of
Lithium Diisopropylamide Deaggregation. J. Org. Chem. 2011, 76,
7985.
(35) Chakrabarti, P.; Dunitz, J. D. Directional Preferences of Ether
O-Atoms Towards Alkali and Alkaline Earth Cations. Helv. Chim. Acta
1982, 65, 1482.
(36) Intrinsic reaction coordinate (IRC) calculations are defined as
“the minimum energy reaction pathway (MERP) in mass-weighted
cartesian coordinates between the transition state of a reaction and its
reactants and products.” They show the minima preceding and
following transition state.
(22) For leading references to marked enolate aging effects, see ref 5.
(23) The intended mole fraction refers to the mole fraction based on
what was added to the samples. The measured mole fraction, the mole
fraction within only the ensemble of interest, eliminates the distorting
effects of impurities.
(24) For representative examples of crystallographically characterized
stacked cubes of sodium salts, see: (a) Balloch, L.; Drummond, A. M.;
́
García-Alvarez, P.; Graham, D. V.; Kennedy, A. R.; Klett, J.; Mulvey, R.
E.; O’Hara, C. T.; Rodger, P. J.; Rushworth, I. D. Structural Variations
Within Group 1 (Li- Cs)+(2, 2, 6, 6-Tetramethyl-1-piperidinyloxy)−
Complexes Made via Metallic Reduction of the Nitroxyl Radical. Inorg.
Chem. 2009, 48, 6934. (b) Boyle, T. J.; Velazquez, A. T.; Yonemoto, D.
T.; Alam, T. M.; Moore, C.; Rheingold, A. L. Synthesis and
Characterization of a Family of Solvated Sodium Aryloxide
Compounds. Inorg. Chim. Acta 2013, 405, 374. (c) Scherpf, T.;
Wirth, R.; Molitor, S.; Feichtner, K. S.; Gessner, V. H. Bridging the
Gap Between Bisylides and Methandiides: Isolation, Reactivity, and
Electronic Structure of an Yldiide. Angew. Chem., Int. Ed. 2015, 54,
8542.
(37) Grabowski, E. J. J. Reflections on Process Research−The Art of
Practical Organic Synthesis. In ACS Symposium Series, 870; Abdel-
Magid, A. F., Ragan, J. A., Eds.; American Chemical Society:
Washington, DC, 2004; Chapter 1, pp 1−21.
(38) For leading references to structural studies of dianions, see ref 5.
(25) Laube, T.; Dunitz, J. D.; Seebach, D. On the Interaction
between Lithium Enolates and Secondary Amines in Solution and in
the Crystal. Helv. Chim. Acta 1985, 68, 1373.
L
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX