J. P. Simeone et al. / Tetrahedron Letters 42 (2001) 6459–6461
6461
the coupled product 13. When we switched the ratio to
2:1 ester to lactone and used freshly prepared sodium
methoxide in the same excess, we realized an 87% yield
of chloroketone 14 after acid-catalyzed ring opening.
An attempt was made to perform both transformations
in a ‘single pot’ but this was complicated by our
inability to separate the excess ester from the chloro-
ketone product.
2. Walsh, T. F.; Toupence, R. B.; Young, J. R.; Huang, S.
X.; Ujjainwalla, F.; DeVita, R. J.; Goulet, M. T.;
Wyvratt, Jr., M. J.; Fisher, M. H.; Lo, J.-L.; Ren, N.;
Yudkovitz, J. B.; Yang, Y. T.; Cheng, K.; Smith, R. G.
Bioorg. Med. Chem. Lett. 2000, 10, 443–447 and refer-
ences cited therein.
3. Chu, L.; Fisher, M. H.; Goulet, M. T.; Wyvratt, M. J.;
Fisher, M. H. Tetrahedron Lett. 1997, 38, 3871.
4. Ashton, W. T.; Sisco, R. M.; Yang, Y. T.; Lo, J. L.;
Yudkovitz, J. B.; Cheng, K.; Goulet, M. T. Bioorg. Med.
Chem. Lett. 2001, 11, 1723–1726.
5. Chromatography was performed using 100:1 silica
gel:compound and eluting initially with 3 column vol-
umes of methylene chloride, followed by 5%
methanol:methylene chloride until both isomers eluted.
6. Ashton, W. T.; Sisco, R. M.; Yang, Y. T.; Lo, J. L.;
Yudkovitz, J. B.; Gibbons, P. H.; Mount, G. R.; Ren, R.
N.; Butler, B. S.; Cheng, K.; Goulet, M. T. Bioorg. Med.
Chem. Lett. 2001, 11, 1729–1731.
The chloroketone 14 was condensed with phenyl-
hydrazine 5 under the Fischer indole conditions to give
rise to the target 2-aryl-tryptamine 15. Although the
yields11 for this step in the process are only modest, this
method allowed us to prepare sufficient quantities of
both enantiomers12 in a timely fashion. From here, we
followed the same procedure used for the racemic com-
pound, as outlined above, to obtain optically pure 1b.
The entire process was repeated for the synthesis of the
(R) enantiomer 1c.
7. Grandberg, I. I. Khim. Geterotsikl. Soedin. 1974, 579–590
and references cited therein.
8. Sannicolo, F.; Benincori, T.; Brenna, E. J. Chem. Soc.,
Perkin Trans. 1991, 2139–2145.
9. Solladie, G.; Moghadam, F. M. J. Org. Chem. 1982, 47,
91–94.
10. Sato, M.; Tagawa, H.; Kosasayama, A.; Uchimara, F.;
Kojima, H.; Yamasaki, T.; Sakurai, T. Chem. Pharm.
Bull. 1978, 11, 3296–3305.
In summary, we have prepared racemic and optically
active b-methyl substituted tryptamine derivatives mak-
ing use of a novel synthesis of both enantiomers of
4-chloro-1-(3,5-dimethylphenyl)-3-methylbutan-1-one
and a modified Fischer indole synthesis. These deriva-
tives were transformed into the desired targets 1a–c in
five steps.
11. Several different modifications of the reaction conditions
were examined in an attempt to minimize the tetra-
hydropyridazine product. In all cases, yields of
tryptamines varied from 10 to 40%, depending on the
nature of the substituent at the 5-position.
12. Tryptamines 6, 15, and 16 were separately analyzed on a
Chiralcel ODR column in 1:1 CH3CN:1.0N NaClO4 at
25°C. Under these conditions, the racemate 6 showed
baseline resolution of both enantiomers, whereas analysis
of both enantiomers 15 and 16 revealed none of the
opposite enantiomer present.
References
1. (a) Chu, L.; Hutchins, J. E.; Weber, A. E.; Lo, J.-L.; Yang,
Y. T.; Cheng, K.; Smith, R. G.; Fisher, M. H.; Wyvratt,
M. J.; Goulet, M. T. Bioorg. Med. Chem. Lett. 2001, 11,
509–513; (b) Chu, L.; Lo, J.-L.; Yang, Y. T.; Cheng, K.;
Smith, R. G.; Fisher, M. H.; Wyvratt, M. J.; Goulet, M.
T. Bioorg. Med. Chem. Lett. 2001, 11, 515–517; (c) Lin, P.;
Marino, D.; Goulet, M. T.; Fisher, M. H.; Wyvratt, M. J.;
Cheng, K.; Yang, Y.-T.; Lo, J.-L.; Smith, R. G. Bioorg.
Med. Chem. Lett. 2001, 11, 1073–1076.