10.1002/chem.201800729
Chemistry - A European Journal
FULL PAPER
Posner, P. Ploypradith, M. H. Parker, H. O'Dowd, S. H. Woo, J. Northrop,
M. Krasavin, P. Dolan, T. W. Kensler, S. Xie, T. A. Shapiro, J. Med. Chem.
1999, 42, 4275-4280; c) G. H. Posner, I. H. Paik, S. Sur, A. J. McRiner,
K. Borstnik, S. Xie, T. A. Shapiro, J. Med. Chem. 2003, 46, 1060-1065;
d) J. P. Jeyadevan, P. G. Bray, J. Chadwick, A. E. Mercer, A. Byrne, S.
A. Ward, B. K. Park, D. P. Williams, R. Cosstick, J. Davies, A. P. Higson,
E. Irving, G. H. Posner, P. M. O'Neill, J. Med. Chem. 2004, 47, 1290-
1298; e) J. Chadwick, A. E. Mercer, B. K. Park, R. Cosstick, P. M. O'Neill,
Bioorg. Med. Chem. 2009, 17, 1325-1338; f) A. M. Galal, W. Gul, D.
Slade, S. A. Ross, S. Feng, M. G. Hollingshead, M. C. Alley, G. Kaur, M.
A. ElSohly, Bioorg. Med. Chem. 2009, 17, 741-751; g) D. Chaturvedi, A.
Goswami, P. Pratim Saikia, N. C. Barua, P. G. Rao, Chem. Soc. Rev.
2010, 39, 435-454; h) T. Fröhlich, A. Çapcı Karagöz, C. Reiter, S. B.
Tsogoeva, J. Med. Chem. 2016, 59, 7360-7388.
Both compounds 4 and 7 showed no major signs of cytotoxic
effects in healthy HFFs and thus, can be considered as selective
antimicrobial drug candidates. Furthermore, we easily
immobilized artesunic acid (2a), artemisinin-derived dimer 13 and
trimer 15 onto a solid support (TOYOPEARL® AF-Amino-650M)
via two different methods, which were utilized for the first time in
mass spectrometry-based target ID experiments using total
lysates of HCMV-infected primary human fibroblasts. We
successfully identified a series of proteins (Table 3), some of
which are known from literature to be associated with HCMV
replication. Further experiments are underway to validate the
involvement of these target candidates in the mechanism of action
of artesunic acid and artemisinin-derived di/tri-mers and
dendrimers.
[2]
a) T. Fröhlich, B. Ndreshkjana, J. K. Muenzner, C. Reiter, E. Hofmeister,
S. Mederer, M. Fatfat, C. El-Baba, H. Gali-Muhtasib, R. Schneider-Stock,
S. B. Tsogoeva, Chem. Med. Chem. 2017, 12, 226-234; b) T. Fröhlich,
C. Reiter, M. M. Ibrahim, J. Beutel, C. Hutterer, I. Zeitträger, H. Bahsi, M.
Leidenberger, O. Friedrich, B. Kappes, T. Efferth, M. Marschall, S. B.
Tsogoeva, ACS Omega 2017, 2, 2422-2431; c) F. E. Held, A. A. Guryev,
T. Fröhlich, F. Hampel, A. Kahnt, C. Hutterer, M. Steingruber, H. Bahsi,
C. von Bojničić-Kninski, D. S. Mattes, T. C. Foertsch, A. Nesterov-
Mueller, M. Marschall, S. B. Tsogoeva, Nature communications 2017, 8,
15071.
Combined, the findings strongly suggest a continuation of these
investigations in terms of the compounds’ inhibitory potency
against plasmodium, cytomegalovirus and possibly even more
human pathogens.
Experimental Section
[3]
a) I. H. Paik, S. Xie, T. A. Shapiro, T. Labonte, A. A. Narducci Sarjeant,
A. C. Baege, G. H. Posner, J. Med. Chem. 2006, 49, 2731-2734; b) A. A.
Alagbala, A. J. McRiner, K. Borstnik, T. Labonte, W. Chang, J. G.
D’Angelo, G. H. Posner, B. A. Foster, J. Med. Chem. 2006, 49, 7836-
7842; c) C. Horwedel, S. B. Tsogoeva, S. Wei, T. Efferth, J. Med. Chem.
2010, 53, 4842-4848; d) C. Reiter, A. Herrmann, A. Capci, T. Efferth, S.
B. Tsogoeva, Bioorg. Med. Chem. 2012, 20, 5637-5641; e) S. Wang, T.
Sasaki, Bioorg. Med. Chem. Lett. 2013, 23, 4424-4427.
The following experimental details can be found in the supporting
conditions and procedures for precursors and target compounds 4-15;
experimental
conditions
and
procedures
for
immobilized
artemisinin-derived acids 13 and 15 as well as artesunic acid (2a) on
TOYOPEARL® AF-Amino-650M beads (constructs 24 and 26); spectral
data of precursors and target compounds 4-15; recorded spectra of target
compounds 4-15; details of cell lines and reagents as well as cell viability
assay for biological evaluation; conditions and procedures for target ID
experiments.
[4]
[5]
Y. Tu, Nat. Med. 2011, 17, 1217-1220.
a) Qinghaosu Antimalarial Coordinating Research Group, Chin. Med. J.
(Engl. Ed.) 1979, 12, 811-816; b) D. Klayman, Science 1985, 228, 1049-
1055; c) Y. Li, Y. L. Wu, Curr. Med. Chem. 2003, 10, 2197-2230; d) N. P.
Singh, H. C. Lai, Anticancer Res. 2004, 24, 2277-2280; e) T. Efferth, Curr.
Drug Targets 2006, 7, 407-421; f) T. Efferth, M. R. Romero, D. G. Wolf,
T. Stamminger, J. J. Marin, M. Marschall, Clin. Infect. Dis. 2008, 47, 804-
811; g) L. H. Miller, X. Su, Cell 2011, 146, 855-858; h) B. N. Sharma, M.
Marschall, C. H. Rinaldo, Antimicrob. Agents Chemother. 2014, 58,
6724-6734; i) X. G. Zhang, G. X. Li, S. S. Zhao, F. L. Xu, Y. H. Wang, W.
Wang, Parasitol. Res. 2014, 113, 1769-1773; j) A. Flobinus, N. Taudon,
M. Desbordes, B. Labrosse, F. Simon, M. C. Mazeron, N. Schnepf, J.
Antimicrob. Chemother. 2014, 69, 34-40; k) C.-j. Hu, L. Zhou, Y. Cai,
Cancer Biol. Ther. 2014, 15, 279-288; l) M. Lucibello, S. Adanti, E.
Antelmi, D. Dezi, S. Ciafre, M. L. Carcangiu, M. Zonfrillo, G. Nicotera, L.
Sica, F. De Braud, P. Pierimarchi, Oncotarget 2015, 6, 5275-5291.
C. Reiter, T. Fröhlich, L. Gruber, C. Hutterer, M. Marschall, C.
Voigtländer, O. Friedrich, B. Kappes, T. Efferth, S. B. Tsogoeva, Bioorg.
Med. Chem. 2015, 23, 5452-5458.
Acknowledgements
S.B.T. is grateful to the Deutsche Forschungsgemeinschaft
(DFG) for generous funding by grant TS 87/16-3 and to the
Interdisciplinary Center for Molecular Materials (ICMM), the
Graduate School Molecular Science (GSMS), as well as
Emerging Fields Initiative (EFI) “Chemistry in Live Cells”
supported by Friedrich-Alexander-Universität Erlangen-Nürnberg
for research funding. M.M. greatly acknowledges excellent
technical assistance by Hanife Strojan and funding support
through the Deutsche Forschungsgemeinschaft (grant MA
1289/7-3). L.B. and Y.C. thank the support of the discovery
platform and informatics group at EDyP. Proteomic experiments
were partly supported by the Proteomics French Infrastructure
(ANR-10-INBS-08-01 grant) and Labex GRAL (ANR-10-LABX-
49-01).
[6]
[7]
a) N. Edikpo, S. Ghasi, A. Elias, N. Oguanobi, Mol. Cell. Pharmacol. 2013,
5, 75-89; b) K. C. Ravindra, W. E. Ho, C. Cheng, L. C. Godoy, J. S.
Wishnok, C. N. Ong, W. S. F. Wong, G. N. Wogan, S. R. Tannenbaum,
Chem. Res. Toxicol. 2015, 28, 1903-1913; c) H. M. Ismail, V. E. Barton,
M. Panchana, S. Charoensutthivarakul, G. A. Biagini, S. A. Ward, P. M.
O'Neill, Angew. Chem. Int. Ed. 2016, 55, 6401-6405; d) H. M. Ismail, V.
Barton, M. Phanchana, S. Charoensutthivarakul, M. H. L. Wong, J.
Hemingway, G. A. Biagini, P. M. O’Neill, S. A. Ward, Proc. Nat. Acad.
Sci. U.S.A. 2016, 113, 2080-2085; e) Y. Zhou, W. Li, Y. Xiao, ACS Chem.
Biol. 2016, 11, 882-888; f) C.-J. Zhang, J. Wang, J. Zhang, Y. M. Lee, G.
Feng, T. K. Lim, H.-M. Shen, Q. Lin, B. Liu, Angew. Chem. Int. Ed. 2016,
55, 13770-13774; g) C. Sun, B. Zhou, Microbial Cell 2016, 3, 196-205;
h) Y. K. Wong, C. Xu, K. A. Kalesh, Y. He, Q. Lin, W. S. F. Wong, H.-M.
Shen, J. Wang, Med. Res. Rev. 2017, 37, 1492-1517.
Keywords: Artemisinin • artemisinin-derived dendrimers •
antimalarial activity • antiviral activity • target identification
[1]
a) G. H. Posner, P. Ploypradith, W. Hapangama, D. Wang, J. N.
Cumming, P. Dolan, T. W. Kensler, D. Klinedinst, T. A. Shapiro, Q. Y.
Zheng, C. K. Murray, L. G. Pilkington, L. R. Jayasinghe, J. F. Bray, R.
Daughenbaugh, Bioorg. Med. Chem. 1997, 5, 1257-1265; b) G. H.
This article is protected by copyright. All rights reserved.