Palladacycles 4-6 were prepared via several alternative
pathways as shown in Scheme 2. Initially, stepwise protocols
palladium(II) complexes 2a-e that were converted into
complexes 3a-e via ligand exchange with Ph3P.10 Com-
plexes 3a and 3b provided palladacycles 5a and 5b in good
to excellent yields (59-86%) upon reaction with appropriate
bases (LDA or t-BuOK). Treatment with t-BuOK (1 M in
THF) proved to be the method of choice (Method A, Scheme
2). Palladacycles 4a-c bearing the TMEDA ligand have been
obtained in 66-73% yields upon treatment of complexes
2a-c with t-BuOK and AgNO3 (Method B, Scheme 2). The
silver salt is not essential for ring closure, and the additive
only facilitates chromatographic purification of highly polar
complexes 4a-c. Conversion of complex 2b into pallada-
cycle 4b was also induced by PhOK. However, the palla-
dacycle bearing the N,N-diethylamide group and the Ph3P
ligand could not be obtained from complex 3c by Method
A. Furthermore, while exchange of the TMEDA ligands with
Ph3P proceeded uneventfully with complexes 4a and 4b
giving palladacycles 5a and 5b (Scheme 2), the analogous
transformation did not occur with palladacycle 4c featuring
the amide group.11 When Ph3P was replaced with the less
sterically demanding 1,2-bis(diphenylphosphino)ethane (dppe)
and 1,4-bis(diphenylphosphino)butane (dppb) ligands, the
exchange reaction afforded the expected palladacycles 5c and
6c in good yields (Scheme 2). Thus, it appears that the
combined steric bulk of the amide group and of the two Ph3P
ligands may also be responsible for the failure of the ring-
closure reaction of complex 3c. None of the methods
described above allowed closure to the palladacyclic ring
when complexes 2d,e and 3d,e (Y ) Ph, CH2OMe) lacking
the electron-withdrawing substituents were employed. At-
tempts to cyclize complexes 2b and 3b by treatment with
less basic reagents (DBN, TEA, K2CO3) were unsuccessful.
Apparently, formation of the Csp3-Pd bond proceeds via
an intramolecular ligand substitution process that requires
the presence of low equilibrium concentrations of enolate
anions.12 Finally, a practical high-yielding one-pot prepara-
tion of palladacycles 5a,b from the aryl iodides 1a,b has
been developed (Method C, Scheme 2), which allowed us
to routinely prepare the palladacycles on a 1 g scale.
Palladacycles 4-6 were obtained as air-stable white solids.
Structure assignments based on spectroscopic data were
Scheme 2. Synthesis of Palladacyclesa
a Method A: t-BuOK, THF, rt, 10 min. Method B: t-BuOK,
AgNO3, THF, rt, 10 min. Method C: (i) Pd2dba3, Ph3P, 55 °C, 30
min, (ii) t-BuOK, THF, rt, 10 min, benzene.
were explored. Iodoethers 1a-e, accessible via O-alkylation
of o-iodophenol,8 were treated with Pd2dba3 and tetrameth-
ylethylenediamine (TMEDA) in benzene9 to yield stable
(4) Palladacycles with a metal-bonded stereogenic carbon, other than
those containing the norbornane skeleton, are rare. See: (a) Hashmi, A. S.
K.; Naumann, F.; Bolte, M. Organometallics 1998, 17, 2385-2387. (b)
Munz, D.; Stephan. C.; Dieck, H. T. J. Organomet. Chem. 1991, 407, 413-
420. However, cyclopalladated and cycloplatinated complexes with a metal-
bonded stereogenic carbon are known and have been prepared in a
nonracemic form. See: (c) Ryabov, A. D.; Panyashkina, I. M.; Polyakov,
V. A.; Fischer, A. Organometallics 2002, 21, 1633-1636. (d) Garcia-Ruano,
J. L.; Gonzalez, A. M.; Barcena, A. I.; Camazon, M. J.; Navarro-Ranninger,
C. Tetrahedron: Asymmetry 1996, 7, 139-148. (e) Spencer, J.; Pfeffer, M.
Tetrahedron: Asymmetry 1995, 6, 419-426. (f) Yoneda, A.; Hakushi, T.
Organometallics 1994, 13, 4912-4918. (g) Pfeffer, M. Recl. TraV. Chim.
Pays-Bas 1990, 109, 567-576.
(5) For the preparation of 2H-1-benzopyrans, see: (a) Goujon, J. Y.;
Zammattio, F.; Pagnoncelli, S.; Boursereau, Y.; Kirschleger, B. Synlett 2002,
322-324. (b) Parker, K. A.; Mindt, T. L. Org. Lett. 2001, 3, 3875-3878.
(c) Wang, Q.; Finn, M. G. Org. Lett. 2000, 2, 4063-4065. (d) Wipf, P.;
Weiner, W. S. J. Org. Chem. 1999, 64, 5321-5324. (e) Grubbs, R. H.;
Chang, S. J. Org. Chem. 1998, 63, 864-866. (f) Hoveyda, A. H.; Harrity,
J. P. A.; Wisser, J. S.; Gleason, J. D. J. Am. Chem. Soc. 1997, 119, 1488-
1489. (g) Issa, Y.; Ramazani, A. Synth. Commun. 1997, 27, 1385-1390.
(h) Bigi, F.; Carloni, S.; Maggi, R.; Muchetti, C.; Sartori, G. J. Org. Chem.
1997, 62, 7024-7027.
(7) Depending on the spectator ligands, alkyne insertions to the known
palladacycles are often limited to reactions with dimethyl acetylenedicar-
boxylate (dmad). See: (a) Mateo, C.; Cardenas, D. J.; Fernandez-Rivas,
C.; Echavarren, A. M. Chem. Eur. J. 1996, 2, 1596-1606. (b) Catellani,
M.; Marmiroli, B.; Chiara-Fagnola, M.; Acquotti, D. J. Organomet. Chem.
1996, 507, 157-162. (c) Liu, D.-H.; Li, C.-S.; Cheng, C.-H. Organome-
tallics 1994, 13, 18-20. For general references on alkyne insertions to group
10 metalacycles, see: (d) Campora, J.; Palma, P.; Carmona, E. Coord. Chem.
ReV. 1999, 193-195, 207-281. (e) Bennett, M. A.; Macgregor, S. A.;
Wenger, E. HelV. Chem. Act. 2001, 84, 3084-3104. (f) Campora, J.;
Llebaria, A.; Moreto, J. M.; Poveda, M. L.; Carmona, E. Organometallics
1993, 12, 4032-4038.
(8) Ramakrishnan, V. T.; Kagan, J. J. Org. Chem. 1970, 35, 2901-2904.
(9) Markies, B. A.; Canty, A. J.; de Graaf, W.; Boersma, J.; Janssen, M.
D.; Hogerheide, M. P.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. J.
Organomet. Chem. 1994, 482, 191-199.
(10) Ludwig, M.; Stro¨mberg, S.; Svensson, M.; A° kermark, B. Organo-
metallics 1999, 18, 970-975.
(6) For selected examples of biologically active 2H-1-benzopyrans, see:
(a) Iwasaki, T.; Mihara, S.-I.; Shimamura, T.; Kawakami, M.; Masui, M.;
Hayasaki-Kajiwara, Y.; Naya, N.; Ninomiya, M.; Fujimoto, M.; Nakajima,
M. J. CardioVasc. Pharmacol. 2001, 37, 471-482. (b) Mannhold, R.;
Cruciani, G.; Weber, H.; Lemoine, H.; Derix, A.; Weichel, C.; Clementi,
M. J. Med. Chem. 1999, 42, 981-991. (c) Tronchet, J. M. J.; Zerelli, S.;
Bernardinelli, G. J. Carbohydr. Chem. 1999, 18, 343-359.
(11) An in situ monitoring of the reaction between amide 4c and Ph3P
(2.2 equiv) via 1H and 31P NMR indicated the presence of an unreacted
complex 4c, along with low concentrations of the desired palladacycle [31P
NMR (202 MHz, CDCl3) δ 24.5 (d, J ) 27.7 Hz, 1 P), 26.7 (d, J ) 27.3
Hz, 1 P)]. However, attempts to isolate this product failed.
3680
Org. Lett., Vol. 4, No. 21, 2002