C O M M U N I C A T I O N S
Table 1. Structures of Mutasynthetically Generated Balhimycins
from Supplementation of ∆dpgA Mutant with Substituted
Phenylglycines and the Influence of This Substitution Pattern upon
AB-Ring Closurea
strate recognition by the peptide synthetases to form the heptapep-
tide are met by the monosubstituted substrates 3-HPg and 3-MeOPg.
The additional detection of bicyclic glycopeptides with 3-HPg/3-
MeOPg suggests that narrow constraints on the orientation of the
ring of this amino acid are posed by the oxygenase OxyC12 in order
to achieve AB-ring formation and thus the production of antibi-
otically active products. Consequently, the AB-ring bridge is
expected to be formed exclusively in the position ortho to the
electron-donating hydroxy or methoxy substituent. Interestingly,
substrate specifity of the ∆dpgA mutant is more discriminating
toward mandelic and phenylacetic acids in comparison to their
amino acid analogues. This increased discrimination could be
associated with their intracellular uptake and/or degradation, or
preferably with an additional number of biosynthetic steps required
before their loading onto the peptide synthetase.
In summary, we have shown that the mutasynthesis approach
can be extended to the AB macrocycle, allowing the generation of
a variety of antibiotically active vancomycin-type derivatives
selectively modified at the DPg residue. Access to such compounds
by synthetic routes is extremely laborious, and our approach is a
first step toward a biotechnological generation of modified glyco-
peptide antibiotics.
[M + H]+
m/z
AB
ring
b
1
2
3
4
5
6
c
AA
R
R
R
R
R /R
1291.3*
1305.3*
3-HPg
3-HPg
OH
OH
OH
OH
OH
OH
H
H
H
H
H
H
H
H
H
H/Me
Me/Me
H/Me
Me/Me
H/Me
Me/Me
-
-
-
-
+
+
+
+
+
+
+
-
-
+
+
+
H
H
H
H
H
H
H
H
H
H
H
H
1129.2*,d 3-HPg
Hd
Hd
1143.2*,d 3-HPg
1430.3
1303.2
1628.5
1487.4
1430.2
1289.1
1303.1
1291.2*
1305.2*
1305.1
1319.1*
1319.2*
3-HPg
3-HPg
ovcne
H
3-MeOPg OMe
3-MeOPg OMe
3-MeOPg OMe
3-MeOPg OMe
3-MeOPg OMe
3-MeOPg OMe
3-MeOPg OMe
HMeOPg OH
HMeOPg OH
urvcnf ovcne H/Me
urvcnf
ovcne
H
H
H
H
H
H
H
H
H
H
H/Me
H/H
H/H
H/Me
H/H
H/Me
H/H
Acknowledgment. This work was supported by an Emmy-
Noether fellowship of the Deutsche Forschungsgemeinschaft (SU
239/1-2). We thank Prof. G. Jung for generous support.
H
H
H
H
H
H
Supporting Information Available: General experimental proce-
dures and characterization data (PDF). This material is available free
OMe
OMe
H/Me
H/H
DMeOPg OMe OMe
References
a According to LC-ESI-MS experiments. Major metabolites are indicated
with an asterisk. The most probable orientation of substituents at the DPg
moiety in the metabolites is shown. b Supplemented amino acid. c Indicates
whether the AB ring (AA 5-7) is closed (+) or open (-). d Non-
glucosylated (aglycon). e ovcn ) 4-oxovancosamine (Figure 1). f urvcn )
ureido-vancosamine (Figure 2).
(1) Reviews: (a) Nicolaou, K. C.; Boddy, C. N C.; Bra¨se, S.; Winssinger, N.
Angew. Chem., Int. Ed. 1999, 38, 2096-2152. (b) Hubbard, B. K.; Walsh,
C. T. Angew. Chem., Int. Ed. 2003, 42, 730-765.
(2) Losey, H. C.; Jiang, J.; Biggins, J. B.; Oberthur, M.; Ye, X.-Y.; Dong, S.
D.; Kahne, D.; Thorson, J. S.; Walsh, C. T. Chem. Biol. 2002, 9, 1305-
1314.
(3) McComas, C. C.; Crowley, B. M.; Hwang, I.; Boger, D. L. Bioorg. Med.
Chem. Lett. 2003, 13, 2933-2936.
(4) Chatterjee, S.; Vijayakumar, E. K. S.; Nadkarni, S. R.; Patel, M. V.;
Blumbach, J.; Ganguli, B. N.; Fehlhaber, H.-W.; Kogler, H.; Vertesy, L.
J. Org. Chem. 1994, 59, 3480-3484.
(5) (a) Su¨ssmuth, R. D.; Pelzer, S.; Walk, T.; Wohlleben, W.; Jung, G. Angew.
Chem., Int. Ed. 1999, 38, 1976-1979. (b) Pelzer, S.; Su¨ssmuth, R.;
Heckmann, D.; Recktenwald, J.; Huber, P.; Jung, G.; Wohlleben, W.
Antimicrob. Agents Chemother. 1999, 1565-1573.
(6) Puk, O.; Huber, P.; Bischoff, D.; Recktenwald, J.; Jung, G.; Su¨ssmuth,
R. D.; van Pe´e, K.-H.; Wohlleben, W.; Pelzer, S. Chem. Biol. 2002, 9,
225-235.
(7) Hubbard, B. K.; Thomas, M. G.; Walsh, C. T. Chem. Biol. 2000, 7, 931-
942.
(8) Pfeifer, V.; Nicholson, G. J.; Ries, J.; Recktenwald, J.; Schefer, A. B.;
Shawky, R. M.; Schro¨der, J.; Wohlleben, W.; Pelzer, S. J. Biol. Chem.
2001, 42, 38370-38377.
Figure 2. ESI-FTICR-MS (internal calibration) of two-fold chlorinated
ureido-7[3-MeOPg]-balhimycin; urvcn ) ureido-vancosamine.
(9) (a) Chen, H.; Tseng, C. C.; Hubbard, B. K.; Walsh, C. T. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 14901-14906. (b) Tseng, C. C.; McLoughlin,
S. M.; Kelleher, N. L.; Walsh, C. T. Biochemistry 2004, 43, 979-980.
(10) (a) Sandercock, A. M.; Charles, E. H.; Scaife, W.; Kirkpatrick, P. N.;
O’Brien, S. W.; Papageorgiou, E. A.; Spencer, J. B.; Williams, D. H.
Chem. Commun. 2001, 1252-1253. (b) Li, T.-L.; Choroba, O. W.; Hong,
H.; Williams, D. H.; Spencer, J. B. Chem. Commun. 2001, 2156-2157.
(11) Weist, S.; Bister, B.; Puk, O.; Bischoff, D.; Pelzer, S.; Nicholson, G. J.;
Wohlleben, W.; Jung, G.; Su¨ssmuth, R. D. Angew. Chem., Int. Ed. 2002,
41, 3383-3385.
mycin derivatives. The acceptance of both mandelic and phenyl-
acetic acids would favor the proposed DPA biosynthesis path-
ways.9,10
According to our results, the presence of at least one hydroxy
or methoxy substituent in the 3-position at the phenylglycine is of
crucial importance for its acceptance as a substrate for the formation
of bicyclic and tricyclic aglycons. A 3,5-disubstitution pattern with
either hydroxy or methoxy groups as well as a “mixed” substitution
pattern (HMeOPg) is tolerated and leads to completely cyclized
aglycons. Apparently, steric and electronic requirements for sub-
(12) (a) Bischoff, D.; Pelzer, S.; Bister, B.; Nicholson, G. J.; Stockert, S.;
Schirle, M.; Wohlleben, W.; Jung, G.; Su¨ssmuth, R. D. Angew. Chem.,
Int. Ed. 2001, 40, 4688-4691. (b) Bischoff, D.; Pelzer, S.; Nicholson, G.
J.; Stockert, S.; Wohlleben, W.; Jung, G.; Su¨ssmuth, R. D. Angew. Chem.,
Int. Ed. 2001, 40, 1693-1696.
JA0499389
9
J. AM. CHEM. SOC. VOL. 126, NO. 19, 2004 5943