Table 1 Catalysis of aldol reactions with amidoamine l-3 (of 82% ee)
1 (a) J. Jacques, A. Collet and S. H. Wilen, Enantiomers, Racemates,
and Resolutions, Wiley, New York, NY, 1981; (b) A. Collet,
M.-J. Brienne and J. Jacques, Chem. Rev., 1980, 80, 215.
2 (a) L. Perez-Garcıa and D. B. Amabilino, Chem. Soc. Rev., 2007,
36, 941; (b) L. Perez-Garcıa and D. B. Amabilino, Chem. Soc. Rev.,
2002, 31, 342.
3 For an authoritative historical perspective on Pasteur’s seminal
resolution work, see: G. B. Kauffman and R. D. Myers, J. Chem.
Educ., 1975, 52, 777.
Aldehyde 4 Product distribution (mol%)a Aldol adduct 5
4 D. K. Kondepudi and K. Asakura, Acc. Chem. Res., 2001, 34, 946.
5 (a) R. Plasson, D. K. Konepudi and K. Asakura, J. Phys. Chem. B,
2006, 110, 8481; (b) M. Avalos, R. Babiano, P. Cintas,
R. L. Jimenez and J. C. Palacios, Origins Life Evol. Biosphere,
2004, 34, 391.
6 (a) R. E. Pincock and K. R. Wilson, J. Am. Chem. Soc., 1971, 93,
1291; (b) K. R. Wilson and R. E. Pincock, J. Am. Chem. Soc., 1975,
97, 1474.
7 (a) D. K. Kondepudi, J. Laudadio and K. Asakura, J. Am. Chem.
Soc., 1999, 121, 1448; (b) K. Asakura, Y. Nagasaka, M. Hidaka,
M. Hayashi, S. Osanai and D. K. Kondepudi, Chirality, 2004, 16, 131.
8 For a topologically distinct class of axially chiral 21 amines useful
for enantioselective organocatalysis, see: T. Kano and
K. Maruoka, Chem. Commun., 2008, 5465.
R
AL : DAL : AC : SM
Yieldb (%) eec (%)
#
1
2
3
4
5
6
7
8
4-NO2
4-CF3
4-Cl
3-Cl
2,6-Cl2
H
69 : 28 : 3 : 0
70 : 14 : 9 : 7
23 : 6 : 10 : 61
53 : 8 : 4 : 35
79 : 11 : 10 : 0
14 : 2 : 17 : 67
5 : 2 : 10 : 83
o1 : o1 : 2 : 97
34
41
13
24
58
6
3
1
1
o1
1
2
4-Me
4-MeO
2
0
nd
—
Determined by 1H NMR analysis of crude product mixture:
a
AL = aldol (8), DAL = a,a0-acetone double aldol, AC = aldol
condensation, SM = starting aldehyde. Isolated yield of purified
b
9 (a) S. Bertelsen and K. A. Jørgensen, Chem. Soc. Rev., 2009, 38,
2178; (b) D. W. C. MacMillan, Nature, 2008, 455, 304.
c
aldol adduct. By HPLC.
10 (a) M. E. Jungfleish, J. Pharm. Chim., 1882, 5, 346. For a recent
application and description: (b) M. K. Dowd, Chirality, 2003, 15, 486.
11 Loss of the stereochemical integrity most likely occurred during t-Bu
group deprotection in hot trifluoroacetic acid (TFA). Acid solvents
have been documented to reduce the configurational stability of 2,20-
dimethoxy-6,60-diphenamide, see: D. R. McKelvey, R. P. Kraig,
K. Zimmerman, A. Ault and R. Perfetti, J. Org. Chem., 1973, 38, 3610.
12 F. C. Frank, Biochim. Biophys. Acta, 1953, 11, 459.
13 The polarimeter reading for an optically active methanolic solution
of 3ꢀTFA remained unchanged after a period of 6.5 h at reflux.
14 For example, Co(III) complexes: (a) F. Guo, M. Casadesus,
E. Y. Cheung, M. P. Coogan and K. D. M. Harris, Chem.
Commun., 2006, 1854; (b) K. Asakura, D. K. Kondepudi and
R. Martin, Chirality, 1998, 10, 343. Ru(II) complexes:
(c) W. Huang and T. Ogawa, Polyhedron, 2006, 25, 1379. We
thank a referee for highlighting this work.
15 For notable recent examples, see: (a) W. L. Noorduin, T. Izumi,
A. Millemaggi, M. Leeman, H. Meekes, W. J. P. Van Enckevort,
R. M. Kellogg, B. Kaptein, E. Vlieg and D. G. Blackmond, J. Am.
Chem. Soc., 2008, 130, 1158; (b) S. B. Tsogoeva, S. Wei, M. Freund
and M. Mauksch, Angew. Chem., Int. Ed., 2009, 48, 590;
(c) R. J. Arthur, M. P. Coogan, M. Casadesus, R. Haigh,
D. A. Headspith, M. G. Franesconi and R. H. Laye, CrystEngComm,
2009, 11, 610.
16 See ref. 2 and for a recent example: (a) Q.-X. Yao, W.-M. Xuan,
H. Zhang, C.-Y. Tu and J. Zhang, Chem. Commun., 2009, 59. The
best known examples of symmetry breaking during crystallization
from an achiral liquid state concern inorganic salts, NaClO3 and
NaBrO3, see: (b) D. K. Kondepudi, K. L. Bullock, J. A. Digits,
J. K. Hall and J. M. Miller, J. Am. Chem. Soc., 1993, 115, 10211;
(c) C. Viedma, Phys. Rev. Lett., 2005, 94, 065504.
resolution of configurationally stable metal coordination
complexes is quite well known;14 however, examples of related
symmetry breaking resolution phenomena concerning purely
organic molecules, such as that discovered for amidoamine
salt 3ꢀTFA, are dominated by systems which either lack
configurational stability15 or else are achiral16 in the liquid
state. The unanticipated behavior of 3ꢀTFA is likely linked to
its ionic character and the ability of bridging achiral trifluoro-
acetate anions to communicate spatially pervasive non-
covalent interactions.2,17 Finally, of further significance is
the fact that amidoamine 3 exhibits some catalytic activity
for the direct acetone aldol reaction. While enantioselectivity
in this particular process is low, the observation is supportive
of one plausible mechanism by which homochirality could
arise in a given prebiotic environment; i.e., spontaneous
resolution of an active catalyst component thence propagation
of this chiral information via enantioselective transformation
of some other prochiral substance.18,19
The generous financial support of Oregon State University
is gratefully acknowledged. The National Science Foundation
(CHE-0722319) and the Murdock Charitable Trust (2005265)
are also thanked for their support of the OSU NMR facility.
17 Conglomerate formation has also been reported for an organic salt
formed from an axially chiral acid (1,10-binaphthyl-2,20-dicarboxylic
acid) in the presence of an achiral basic unit (3,5-dimethylpyrazole).
Crystals exhibited hemihedrism and resolution was conducted by a
mechanical triage. It is speculated that interrupted crystallization in
this system might also result in symmetry breaking resolution, see:
O. Hager, A. L. Llamas-Saiz, C. Foces-Foces, R. M. Claramunt,
C. Lopez and J. Elguero, Helv. Chim. Acta, 1999, 82, 2213.
18 For discourse and leading references on current theories relating to
the origin of biological homochirality, see: D. G. Blackmond,
Angew. Chem., Int. Ed., 2009, 48, 2648.
Notes and references
z Crystal data for 3ꢀCF3CO2H: C20H23F3N2O5, Mr
T = 173(2) K, l = 0.71073 A (MoKa), 0.35 ꢃ 0.15 ꢃ 0.10 mm,
orthorhombic, P212121, 8.5061(6), 12.7978(9),
c = 19.4743(14) A, V = 2120.0(3) A3, Z = 4, Dc = 1.342 g cmꢂ3
m = 0.113 mmꢂ1, F(000) = 896, 2ymax = 50.01, 20 323 reflections,
3731 unique (Rint 0.0269), 349 parameters, R1 0.0468,
= 428.40,
a
=
b
=
,
=
=
wR2 = 0.1273 [I 4 2s(I)], GOF = 1.055, max/min residual electron
density +0.684/ꢂ0.446 e Aꢂ3. CCDC 748440.
y Crystal data for 1: C26H36N2O4, Mr = 440.57, T = 173(2) K,
l = 0.71073 A (MoKa), 0.35 ꢃ 0.24 ꢃ 0.17 mm, monoclinic, P21,
a = 10.5558(7), b = 10.4979(7), c = 11.4257(8) A, b = 103.691(1)1,
19 For two recent reports of crystallization based absolute asym-
metric synthesis, see: (a) A. Lennartson, S. Olsson, J. Sundberg and
M. Hankansson, Angew. Chem., Int. Ed., 2009, 48, 3137;
(b) A. Kuhn and P. Fischer, Angew. Chem., Int. Ed., 2009, 48,
V = 1230.15(14) A3, Z = 2, Dc = 1.189 g cmꢂ3, m = 0.080 mmꢂ1
,
F(000) = 476, 2ymax = 55.01, 8028 reflections, 5304 unique (Rint
=
0.0121), 433 parameters, R1 0.0329, wR2 0.0844
6857. For a non-crystallization based absolute asymmetric
=
=
synthetic method, see: (c) T. Kawasaki, M. Sato, S. Ishiguro,
T. Saito, Y. Morishita, I. Sato, H. Nishino, Y. Inoue and
K. Soai, J. Am. Chem. Soc., 2005, 127, 3274.
[I 4 2s(I)], GOF = 1.017, max/min residual electron density
+0.217/ꢂ0.151 e Aꢂ3. CCDC 748439.
ꢁc
This journal is The Royal Society of Chemistry 2010
2096 | Chem. Commun., 2010, 46, 2094–2096