10.1002/anie.201710567
Angewandte Chemie International Edition
COMMUNICATION
(Fig. S16). These results clearly suggest that 1 and 2 are
comparable substrates for AsqJ.
This work was supported by North Carolina State University,
Carnegie Mellon University, National Taiwan University, and
Ministry of Science and Technology grant 106-2113-M-002-021-
MY3, R.O.C., Taiwan, We thank Mr. Andrew Weitz and Prof.
Michael P. Hendrich for the use of the FQ apparatus. We also
thank Mr. Serzhan Sakipov for the MD simulations.
Conflict of Interest
The authors declare no conflict of Interest.
Keywords: desaturation • C-C bond formation • enzyme
mechanism • viridicatin • carbocation
[1]
[2]
N. Ishikawa, H. Tanaka, F. Koyama, H. Noguchi, C. C. Wang, K. Hotta,
K. Watanabe, Angew. Chem. Int. Ed. 2014, 53, 12880-12884.
a) A. Brauer, P. Beck, L. Hintermann, M. Groll, Angew. Chem. Int. Ed.
2016, 55, 422-426; b) W.-c. Chang, J. Li, J. L. Lee, A. A. Cronican, Y.
Guo, J. Am. Chem. Soc. 2016, 138, 10390-10393.
[3]
a) J. L. Abad, F. Camps, G. Fabrias, Angew. Chem. Int. Ed. 2000, 39,
3279-3281; b) J. L. Abad, F. Camps, G. Fabrias, J. Am. Chem. Soc. 2007,
129, 15007-15012; c) E. J. Whittle, A. E. Tremblay, P. H. Buist, J.
Shanklin, Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14738-14743; d) B.
Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104, 3947-3980;
e) C. A. Reilly, W. J. Ehlhardt, D. A. Jackson, P. Kulanthaivel, A. E. Mutlib,
R. J. Espina, D. E. Moody, D. J. Crouch, G. S. Yost, Chem. Res. Toxicol.
2003, 16, 336-349; f) E. I. Solomon, A. Decker, N. Lehnert, Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 3589-3594; g) M. Newcomb, R. Shen, S.-
Y. Choi, P. H. Toy, P. F. Hollenberg, A. D. N. Vaz, M. J. Coon, J. Am.
Chem. Soc. 2000, 122, 2677-2686; h) L. Britsch, Arch. Biochem. Biophys.
1990, 282, 152-160; i) J. Zhou, W. L. Kelly, B. O. Bachmann, M. Gunsior,
C. A. Townsend, E. I. Solomon, J. Am. Chem. Soc. 2001, 123, 7388-
7398; j) L. Ji, A. S. Faponle, M. G. Quesne, M. A. Sainna, J. Zhang, A.
Franke, D. Kumar, R. v. Eldik, W. Liu, S. P. de Visser, Chem. Eur. J.
2015, 21, 9083-9092; k) R. M. Phelan, C. A. Townsend, J. Am. Chem.
Soc. 2013, 135, 7496-7502. l) D. Usharani, D. Janaradanan, S. Shaik, J.
Am. Chem. Soc. 2011, 133, 176-179; m) H. L. R. Cooper, G. Mishra, X.
Huang, M. Pender-Cudlip, R. N. Austin, J. Shanklin, J. T. Groves, J. Am.
Chem. Soc. 2012, 134, 20365-20375.
Figure 4. LC-MS chromatogram of AsqJ catalyzed reactions. In panel (A), 1
and 2 were consumed when 2OG was added; (B) 1 and 2 were converted to
epoxide 4; and (C) chemical quench results of 2 at 0.2, 1.5 and 20 seconds and
anaerobic control sample revealed the formation of 3 and 4 at different times.
In summary, the experimental data presented herein suggest that
both 1 and 2 can be converted to cyclopenin (4) through a
common intermediate 3 during AsqJ catalysis. Crystallographic
structures and MD simulations, together with the SF-Abs,
Mössbauer, and LC-MS analyses on the reaction of
AsqJ•Fe•2OG•2 (or 1) complex reveal that the chirality of C3 is
not critical to the desaturation reaction. Furthermore, in the case
of 2, these results suggest that the primary H• abstraction site is
at C10 and the subsequent C3-H• abstraction is unlikely due to
spatial conformation of 2 in the AsqJ active site. Thus, the AsqJ
catalyzed desaturation is likely initiated from C10-H bond
activation by a short-lived Fe(IV)-oxo species. Subsequently, a
second H• abstraction pathway that has been proposed in P450,
di-iron and non-heme iron desaturases[3] is less likely to operate.
Instead, pathways involving a carbocation or a hydroxylated
intermediate are more likely to be utilized in AsqJ catalyzed
desaturation (Scheme 2).
[4]
a) J. M. Bollinger, Jr., W.-c. Chang, M. L. Matthews, R. J. Martinie, A. K.
Boal, C. Krebs, Mechanisms of 2-oxoglutarate-dependent oxygenases:
the hydroxylation paradigm and beyond. In 2-oxoglutarate-dependent
oxygenases; Hausinger, R. P., Schofield, C. J., Eds.; The Royal Society
of Chemistry: London, 2015, pp. 95-122; b) S. Martinez, R. P. Hausinger,
J. Biol. Chem. 2015, 290, 20702-20711.
[5]
[6]
[7]
[8]
a) M. Ishikura, M. Mori, T. Ikeda, M. Terashima, Y. Ban, J Org Chem
1982, 47, 2456-2461; b) T. Sugimori, T. Okawa, S. Eguchi, A. Kakehi, E.
Yashima, Y. Okamoto, Tetrahedron 1998, 54, 7997-8008.
a) J. Huang, C. S. Li, B. J. Wang, D. A. Sharon, W. Wu, S. Shaik, ACS
Catal. 2016, 6, 2694-2704; b) H. Su, X. Sheng, W. Y. Zhu, G. C. Ma, Y.
J. Liu, ACS Catal. 2017, 7, 5534-5543.
a) E. G. Pavel, J. Zhou, R. W. Busby, M. Gunsior, C. A. Townsend, E. I.
Solomon, J. Am. Chem. Soc. 1998, 120, 743-753; b) J. M. Bollinger, Jr.,
C. Krebs, J. Inorg. Biochem. 2006, 100, 586-605.
a) J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, Jr., C. Krebs,
Biochemistry 2003, 42, 7497-7508; b) M. L. Matthews, C. M. Krest, E. W.
Barr, F. H. Vaillancourt, C. T. Walsh, M. T. Green, C. Krebs, J. M.
Bollinger, Biochemistry 2009, 48, 4331-4343.
Author Contributions
†These authors contributed equally.
[9]
J. C. Price, E. W. Barr, L. M. Hoffart, C. Krebs, J. M. Bollinger, Jr.,
Biochemistry 2005, 44, 8138-8147.
Acknowledgements
This article is protected by copyright. All rights reserved.