Cycloisomerization/Dimerization of Terminal Allenyl Ketones
J . Org. Chem., Vol. 62, No. 21, 1997 7301
gen;39 thus many turnovers of the catalytic cycle should
be impossible with Pd(0). In addition, the aryl halides,
especially the aryl iodides 1E and 1O, should immediately
undergo oxidative addition to a Pd(0) intermediate.40
Then this arylpalladium(II) compounds would carbo-
metalate another allene, thus leading to the kind of
products described by Gore´ and others.41 Furthermore
the addition of nucleophiles to olefins is a domain of
Pd(II) catalysts as exemplified by the Wacker oxidation42
and related reactions.43
If one accepts that Pd(0) is not involved and if one takes
into consideration the intramolecularity of the hydrogen
migration, it becomes necessary to formulate Pd(IV)
intermediates with any mechanism for the formation of
3. Organometallic Pd(IV) complexes are well known in
the literature.44 Even Pd(IV)-hydride species have been
proposed;44a,45 these proposals experience further support
by the recent isolation46 and in one case crystallographic
characterization47 of the related organo-Pt(IV)-hydride
complexes. The solvent dependency of the ratio of 2:3
(see Tables 2 and 4) is also in accordance with the
proposed Pd(IV) intermediates. Since Pd(IV) shows an
octahedral coordination of six ligands, the solvent must
occupy two coordination sites. Good donor ligands (like
MeCN,48 acetone, EtOH, MeOH; nitrogen and oxygen
donor ligands are preferred for Pd(IV)44 and Pt(IV)46) will
stabilize (stabilize does not mean that the compound is
stable, for a catalytic cycle with high turnover frequency
and numbers reactive intermediates are essential) the
Pd(IV) intermediate, thus more of 3 is formed. With
weaker donor ligands (like CDCl3, ethers, and benzene)
the Pd(IV)-H species will form 2 by reductive elimination
before this intermediate can add to a second allene
(pathway A, see below) or the formation of the Pd(IV)-
cycle does not take place that readily (pathway B). The
exclusive formation of the monomer 2 with the Ag(I)
catalyst could be explained by the mechanism proposed
by Marshall,6d where the hydrogen moves by a 1,2-H-
shift rather than by a â-H-elimination (see below), thus
avoiding an unfavorable Ag(III) intermediate but also
preventing C-C-bond formation.
3. P ossible Mech a n ism s. There are two mecha-
nisms (pathways A and B) which are in accordance with
the experimental results. Due to reasons to be discussed
at the end of the description of pathway B we prefer
pathway A. Other existing mechanistic possibilities,
which include steps and intermediates known from other
palladium-catalyzed reactions, but which do not harmo-
nize with our experiments, will be discussed only briefly
(pathways C-E).
P a th w a y A. First the terminal double bond of the
allenyl ketone coordinates to the palladium(II) (this
double bond is less substituted and more electron rich).
The coordination bends the allene,3c,d thus bringing the
terminal carbon within reach of the carbonyl oxygen (at
least in an s-cis conformation, 13). Usually R,â-unsatur-
ated carbonyl compounds with bulky substituents at the
carbonyl group prefer the s-cis conformation necessary
for ring-closure.49 We were able to obtain X-ray struc-
tures from 1r and 1η.50 While 1η shows an s-trans
conformation, 1r occupies an s-cis conformation. The
distance of the oxygen and the terminal carbon of the
allene in 1r is 3.64 Å; coordination to palladium should
bent the allene, and thus the oxygen-carbon distance
discussed above should decrease substantially.51
(40) Mandai, T.; Matsumoto, T.; Tsuji, J . Tetrahedron Lett. 1993,
34, 2513-2516. Hartwig, J . F.; Paul, F. J . Am. Chem. Soc. 1995, 117,
5373-5374.
(41) (a) Hughes, R. P.; Powell, J . J . Organomet. Chem. 1973, 60,
409-425. (b) Ahmar, M.; Barieux, J .-J .; Cazes, B.; Gore, J . Tetrahedron
1987, 43, 513-526. (c) Cazes, B. Pure Appl. Chem. 1990, 62, 1867-
1878.
(42) (a) Eilbracht, P. In Houben Weyl; Helmchen, G., Hoffmann, R.
W., Mulzer, J ., Schaumann, E., Eds.; Thieme: Stuttgart, 1995; vol.
E21c, pp 2702-2712. For Cl- from PdCl2 as nucleophile, see: (b)
Godleski, S. A. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: Oxford, 1991;
vol. 4, pp 585-661 (specific pp 587-588). (c) Davies, J . A. In
Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F.
G. A., Wilkinson, G., Puddephatt, R. J ., Eds.; Pergamon Press: Oxford,
1995; vol. 9, pp 291-390 (specific p 330).
(43) Hosokawa, T.; Murahashi, S.-I. Acc. Chem. Res. 1990, 23, 49-
54. For examples with PdCl2(MeCN)2, see: Pearlman, B. A.; Mc-
Namara, J . M.; Hasan, I.; Hatakeyama, S.; Sekizaki, H.; Kishi, Y. J .
Am. Chem. Soc. 1981, 103, 4248-4251. Hosokawa, T. Nakajima, F.;
Iwasa, S.; Murahashi, S.-I. Chem. Lett. 1990, 1387-1390. Kumar, R.
J .; Krupadanam, G. L. D.; Srimannarayana, G. Synthesis 1990, 535-
538. Saito, S.; Hara, T.; Takahashi, N.; Hirai, M.; Moriwake, T. Synlett
1992, 237-238.
(44) Reviews: (a) Canty, A. J . Acc. Chem. Res. 1992, 25, 83-90. (b)
Canty, A. J . Platinum Metals Rev. 1993, 37, 2-7. (c) Canty, A. J ., ref
42c, vol. 9, pp 225-290 (specific pp 272-276). For more recent work,
see: (d) Canty, A. J .; J in, H.; Roberts, A. S.; Skelton, B. W.; White, A.
H. Organometallics 1996, 15, 5713-5722.
(45) Trost, B. M.; Lautens, M. J . Am. Chem. Soc. 1985, 107, 1781-
1783. Trost, B. M.; Chung, J . Y. L. J . Am. Chem. Soc. 1985, 107, 4586-
4588. Canty, A. J .; van Koten, G. Acc. Chem. Res. 1995, 28, 406-413.
Shimada, S.; Tanaka, M.; Shiro, M. Angew. Chem. 1996, 108, 1970-
1972; Angew. Chem., Int. Ed. Engl. 1996, 35, 1856-1858. Grushin, V.
V. Chem. Rev. 1996, 96, 2011-2033.
Then an oxypalladation of the double bond leads to an
intermediate 14 (Scheme 1).43,52 14 is a γ-donor-
substituted vinylcarbene complex,53,54 but also resembles
a σ-complex of an electrophilic aromatic substitution at
(49) Cherniak, E. A.; Costain, C. C. J . Chem. Phys. 1966, 45, 104-
110. Montaudo, G.; Librando, V.; Caccamese, S.; Maravinga, P. J . Am.
Chem. Soc. 1973, 95, 6365-6370. Bienvenu¨e, A. J . Am. Chem. Soc.
1973, 95, 7345-7353.
(50) So far X-ray structure analyses of only six allenyl ketones are
described in the CCDB; due to geometrical restrictions like rings none
of them provided a reliable value for the C-O-distance.
(51) For the only X-ray structure of a Pd-allene complex, see:
Okamoto, K.; Kai, Y.; Yasuoka, N.; Kasai, N. J . Organomet. Chem.
1974, 65, 427-441. For the only two late transition-metal complexes
of allenyl ketones, see: Suades, J .; Dahan, F.; Mathieu, R. Organo-
metallics 1988, 7, 47-51. Casey, C. P.; Underiner, T. L.; Vosejpka, P.
C.; Gavney, J . A., J r.; Kiprof, P. J . Am. Chem. Soc. 1992, 114, 10826-
10834.
(52) For the participation of carbonyl-oxygen in oxypalladation
steps, see: Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28,
3127-3130.
(46) Ebsworth, E. A. V.; Marganian, V. M.; Reed, F. J . S.; Gould, R.
O. J . Chem. Soc., Dalton Trans. 1978, 1167-1170. Arnold, D. P.;
Bennett, M. A. Inorg. Chem. 1984, 23, 2110-2116. Wehman-Ooyevaar,
I. C. M.; Grove, D. M.; de Vaal, P.; Dedieu, A.; van Koten, G. Inorg.
Chem. 1992, 31, 5484-5493. De Felice, V.; de Renzi, A.; Panunzi, A.;
Tesauro, D. J . Organomet. Chem. 1995, 488, C13-C14. Hill, G. S.;
Puddephatt, R. J . J . Am. Chem. Soc. 1996, 118, 8745-8746. Canty,
A. J .; Dedieu, A.; J in, H.; Milet, A.; Richmond, M. K. Organometallics
1996, 15, 2845-2847. Holtcamp, M. W.; Labinger, J . A.; Bercaw, J . E.
J . Am. Chem. Soc. 1997, 119, 848-849.
(53) Pd(0): (a) Busacca, C. A.; Swestock, J .; J ohnson, R. E.; Bailey,
T. R.; Musza, L.; Rodger, C. A. J . Org. Chem. 1994, 59, 7553-7556.
(b) Monteiro, N.; Gore´, J ; van Hemelryck, B.; Balme, G. Synlett 1994,
447-449. (c) Farina, V.; Hossain, M. A. Tetrahedron Lett. 1996, 37,
6997-7000. Pd(II): (d) Dixon, K. R.; Dixon, A. C., ref 42c, vol. 9, pp
193-223 (specific pp 216-220). (e) Maitlis, P. M.; Espinet, P.; Russell,
M. J . H. in ref 1b, vol. 6, pp 279-349 (specific pp 292-296). (f) Trost,
B. M.; Hashmi, A. S. K. Angew. Chem. 1993, 105, 1130-1132; Angew.
Chem., Int. Ed. Engl. 1993, 32, 1085-1087. (g) Trost, B. M.; Hashmi,
A. S. K. J . Am. Chem. Soc. 1994, 116, 2183-2184. See also ref 54. For
stable bis-carbene complexes of Pd(II), see: (h) Herrmann, W. A.;
Elison, M.; Fischer, J .; Ko¨cher, C.; Artus, G. R. J . Angew. Chem. 1995,
107, 2602-2605; Angew. Chem., Int. Ed. Engl. 1995, 34, 2371-2374.
(i) Enders, D.; Gielen, H.; Raabe, G.; Runsink, J .; Teles, J . H. Chem.
Ber. 1996, 129, 1483-1488.
(47) O’Reilly, S. A.; White, P. S.; Templeton, J . L. J . Am. Chem. Soc.
1996, 118, 5684-5689.
(48) MeCN is considered to be a good σ-donor and a weak π-acceptor,
but still to be labile enough to be substituted by the substrate: Storhoff,
B. N.; Lewis, H. C., J r. Coord. Chem. Rev. 1977, 23, 1-29. Endres, H.
In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R.
D., McCleverty, J . A., Eds.; Pergamon Press: Oxford, 1987; vol. 2, pp
261-267.
(54) (a) Wada, M.; Koyama, Y. J . Organomet. Chem. 1980, 201, 477-
491. (b) Wada, M.; Koyama, Y.; Sameshima, K. J . Organomet. Chem.
1981, 209, 115-121.