ORGANIC
LETTERS
2010
Vol. 12, No. 22
5238-5241
Bis(2-sulfanylethyl)amino Native Peptide
Ligation
Nathalie Ollivier, Julien Dheur, Reda Mhidia, Annick Blanpain, and Oleg Melnyk*
CNRS UMR 8161, UniV Lille Nord de France, Institut Pasteur de Lille, IFR 142
Molecular and Cellular Medicine, 1 rue du Pr Calmette 59021 Lille Cedex, France
Received September 22, 2010
ABSTRACT
The reaction of a peptide featuring a bis(2-sulfanylethyl)amino (SEA) group on its C-terminus with a cysteinyl peptide in water at pH 7 and 37
°C leads to the chemoselective and regioselective formation of a native peptide bond. This method called SEA ligation enriches the native
peptide ligation repertoire available to the peptide chemist. Preparation of an innovative solid support which allows the straightforward synthesis
of peptide SEA fragments using standard Fmoc/tert-butyl solid phase peptide synthesis procedures is also described.
Peptide ligation methods such as native chemical ligation
(NCL),1 Staudinger ligation,2 or the decarboxylative con-
densation of N-alkylhydroxylamines and R-ketoacids3 lead
to the formation of a native peptide bond at the ligation site.4
In particular, NCL is a powerful method for synthesizing
native or modified proteins of moderate size (∼150 amino
acids). NCL is based on the reaction of a peptide thioester
with a cysteinyl peptide. A first transthioesterification step
is followed by an intramolecular S,N-acyl shift that results
in the formation of a native X-Cys peptide bond. Thiol
amino acid derivatives combined with a methylation, des-
ulfurization, or saponification step5 or the use of N-linked
thiol-containing removable auxiliaries6 were used to extend
the principle of NCL to sites other than Cys residues.
these approaches is to facilitate peptide thioester synthesis7
or find alternatives to these useful peptide derivatives.8 For
example, the elegant work of Aimoto et al. showed the
(5) Selenocysteine: (a) Gieselman, M. D.; Xie, L.; van Der Donk, W. A.
Org. Lett. 2001, 3, 1331. (b) Quaderer, R.; Hilvert, D. Chem. Commun.
(Cambridge, U. K.). 2002, 21, 2620. Methionine: Tam, J. P.; Yu, Q.
Biopolymer (Pept. Sci.) 1998, 46, 319. Selenomethionine: Roelfes, G.;
Hilvert, D. Angew. Chem., Int. Ed. 2003, 42, 2275. Recent review on
desulfurization-based ligation methods: Rohde, H.; Seitz, O. Biopolymers
2010, 94, 551. Alanine: Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001,
123, 526. (g) Wan, Q.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl.
2007, 46, 9248. (h) Phenylalanine: Crich, D.; Banerjee, A. J. Am. Chem.
Soc. 2007, 129, 10064. Valine: Haase, C.; Rohde, H.; Seitz, O. Angew.
Chem., Int. Ed. Engl. 2008, 47, 6807. Chen, J.; Wan, Q.; Yuan, Y.; Zhu,
J.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 2008, 47, 8521. Leucine:
Harpaz, Z.; Siman, P.; Kumar, K. S.; Brik, A. ChemBioChem 2010, 11,
1232. Glycopeptide synthesis: Brik, A.; Yang, Y. Y.; Ficht, S.; Wong, C. H.
J. Am. Chem. Soc. 2006, 128, 5626. Side-chain auxiliaries for Asp, Glu,
and Ser: Lutsky, M. Y.; Nepomniaschiy, N.; Brik, A. Chem. Commun.
(Cambridge, U. K.) 2008, 10, 1229. Kumar, K. S.; Harpaz, Z.; Haj-Yahya,
M.; Brik, A. Bioorg. Med. Chem. Lett. 2009, 19, 3870. Hojo, H.; Ozawa,
C.; Katayama, H.; Ueki, A.; Nakahara, Y.; Nakahara, Y. Angew. Chem.,
Int. Ed. Engl. 2010, 49, 5318.
Recently, the use of the reverse N,S-acyl shift has emerged
as a promising strategy for peptide thioester synthesis or for
designing novel native ligation methods relying on the in
situ generation of peptide thioesters. The key idea within
(6) (a) Canne, L. E.; Bark, S. J.; Kent, S. B. H. J. Am. Chem. Soc. 1996,
118, 5891. (b) Offer, J.; Dawson, P. E. Org. Lett. 2000, 2, 23. (c) Botti, P.;
Carrasco, M. R.; Kent, S. B. H. Tetrahedron Lett. 2001, 42, 1831.
(7) (a) Hojo, H.; Onuma, Y.; Akimoto, Y.; Nakahara, Y.; Nakahara, Y.
Tetrahedron Lett. 2007, 48, 25. (b) Nakamura, K.; Mori, H.; Kawakami,
T.; Hojo, H.; Nakahara, Y.; Aimoto, S. Int. J. Pept. Res. Ther. 2007, 13,
191. (c) Tsuda, S.; Shigenaga, A.; Bando, K.; Otaka, A. Org. Lett. 2009,
11, 823.
(1) (a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H.
Science 1994, 266, 776. (b) Hackeng, T. L.; Griffin, J. H.; Dawson, P. E.
Proc. Natl. Acad. Sci. 1999, 96, 10068.
(2) (a) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007. (b) Nilsson,
B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2, 1939. (c) Nilsson,
B. L.; Hondal, R. J.; Soellner, M. B.; Raines, R. T. J. Am. Chem. Soc.
2003, 125, 5268.
(3) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem., Int. Ed.
Engl. 2006, 45, 1248.
(8) (a) Kawakami, T.; Aimoto, S. Chem. Lett. 2007, 36, 76. (b)
Kawakami, T.; Aimoto, S. AdV. Exp. Med. Biol. 2009, 611, 117. (c)
Kawakami, T.; Aimoto, S. Tetrahedron 2009, 65, 3871. (d) Kawakami, T.;
Aimoto, S. Tetrahedron Lett. 2007, 48, 1903.
(4) For a recent review: Hackenberger, C. P.; Schwarzer, D. Angew.
Chem., Int. Ed. Engl. 2008, 47, 10030.
10.1021/ol102273u 2010 American Chemical Society
Published on Web 10/21/2010