C. Marschner
FULL PAPER
MS (70 eV): m/z (%): 493 (0.2) [Mϩ Ϫ Me], 305 [Mϩ Ϫ EtSi(Si-
Me3)2], 232 (30) [Me2Si2(SiMe3)2], 188 (24) [EtSi(SiMe3) Ϫ Me], 73
(100) [SiMe3)].
berg, made at the Xth International Symposium on Organosilicon
Chemistry in Posnan, Poland, 1993.
[4]
[5]
[4a] T. D. Tilley in The Chemistry of Organic Silicon Compounds,
Chapter 24, (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester,
[4b]
1989, p. 1415. Ϫ
T. D. Tilley in The Silicon Heteroatom
Bis(trimethylsilyl)ethylsilylpotassium (12): Compound 12 was
prepared from 3 (89 mg, 0.36 mmol) and tert-BuOK (40 mg, 0.36
mmol) in DME following the general procedure. The reaction was
followed directly by 29Si NMR and GC/MS of the quenched
samples. It was found to be complete after 25 min. Ϫ 29Si NMR
(59.6 MHz, DME, D2O lock): δ ϭ Ϫ6.82, Ϫ111.68. Ϫ H3Oϩ
quench: MS (70 eV): m/z (%): 204 (14) [Mϩ], 189 (7) [Mϩ Ϫ Me],
Bond, (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester, 1991,
p. 309.
[5a] D. Hoffmann, H. Reincke, H. Oehme, Z. Naturforsch. 1996,
[5b]
51b, 370. Ϫ
F. Luderer, H. Reincke, H. Oehme, Chem. Ber.
[5c]
1996, 129, 15. Ϫ
Ch. Wendler, H. Oehme, Z. Anorg. Allg.
[5d]
Chem. 1996, 622, 801. Ϫ
C. Krempner, H. Reincke, H.
[5e]
Oehme, Chem. Ber. 1995, 128, 1083. Ϫ
F. Luderer, H. Re-
incke, H. Oehme, J. Organomet. Chem. 1996, 510, 181. Ϫ [5f] C.
Krempner, H. Reincke, H. Oehme, Chem. Ber. 1995, 128, 143.
161 (8) [Mϩ Ϫ SiMe3], 130 (29) [Mϩ Ϫ HSiMe3], 102 (65) [Mϩ
EtSiMe3)], 73 (100) [SiMe3]. Ϫ Ethyl bromide quench: MS (70 eV):
m/z (%): 232 (12) [Mϩ], 159 (16) [Mϩ Ϫ SiMe3], 131 (27) [MHϩ
Ϫ
Ϫ
[5g] D. Bravo-Zhivotovskii, V. Braude, A. Stanger, M. Kapon,
Y. Apeloig, Organometallics 1992, 11, 2326.
[6] [6a]
E. Jeschke, T. Gross, H. Reincke, H. Oehme, Chem. Ber.
Ϫ
1996, 129, 841. Ϫ [6b] Y. Apeloig, I. Zharov, D. Bravo-Zhivotov-
EtSiMe3], 73 (100) [SiMe3]. Repeating the experiment the same
scale in THF led to the same results with some increased reaction
time. Removals of solvent and crystallization from pentane gave
white crystals (56 mg, 0.20 mmol, 56%), which were shown by
NMR to contain half a molecule of THF coordinated to the silyl
potassium compound. Ϫ 1H NMR (300 MHz, C6D6): δ ϭ 3.37 (m,
2 H), 1.37 (m, 2 H), 1.24 (t, J ϭ 7.8 Hz, 3 H), 0.86 (q, J ϭ 7.8 Hz,
2 H), 0.32 (s, 18 H). Ϫ 13C NMR (75.4 MHz, C6D6): δ ϭ 68.42,
25.82, 19.57, 5.03, 3.69.
skii, Y. Ochvinnikov, Y. Struchkov, J. Organomet. Chem. 1995,
[6c]
499, 73. Ϫ
D. Bravo-Zhivotovskii, Y. Apeloig, Y. Ochvinni-
kov, V. Igonin, Y. T. Struchkov, J. Organomet. Chem. 1993, 446,
123. Ϫ [6d] H. Oehme, R. Wustrack, A. Heine, G. M. Sheldrick,
D. Stalke, J. Organomet. Chem. 1993, 452, 33.
K. W. Klinkhammer, W. Schwarz, Z. Anorg. Allg. Chem. 1993,
619, 1777.
C. Krempner, H. Oehme, J. Organomet. Chem. 1994, 464, C7.
For the synthesis of (tert-BuMe2Si)(Me3Si)2SiLi and (tert-Bu-
Me2Si)2(Me3Si)SiLi see: Y. Apeloig, M. Bendikov, M. Yuzefov-
ich, M. Nakash, D. Bravo-Zhivotovskii, D. Bläser, R. Boese, J.
Am. Chem. Soc. 1996, 118, 12228.
For an interesting comparison of the size of ligands see: J. Frey,
E. Schottland, Z. Rappoport, D. Bravo-Zhivotovskii, M. Nak-
ash, M. Botoshansky, M. Kaftory, Y. Apeloig, J. Chem. Soc.
Perkin Trans. 2 1994, 2555.
[7]
[8]
[9]
Bis(trimethylsilyl)silylpotassium (13): Compound 13 was pre-
pared from 2 (775 mg, 3.11 mmol) and tert-BuOK (385 mg, 3.43
mmol) in DME following the general procedure. The reaction was
followed directly by 29Si NMR and GC/MS of the quenched
samples. Complete conversion was reached after 2 h and gave 13
[10]
[11]
[12]
H. Gilman, R. L. Harrel, J. Organomet. Chem. 1967, 9, 67.
Y. Apeloig, M. Yuzefovich, M. Bendikov, D. Bravo-Zhivotov-
skii, K. Klinkhammer, Organometallics 1997, 16, 1265.
Ch. Marschner, E. Hengge in: Organosilicon Chemistry III, N.
Auner, J. Weis , Eds., VCH, Weinheim, in press.
and 1a in a ratio of about 7:3. Ϫ IR ν: 1891 cmϪ1 (SiϪH). Ϫ 29Si
˜
[13]
[14]
NMR (59.6 MHz, DME, D2O lock): δ ϭ Ϫ4.02, Ϫ181.14 (d, J ϭ
82 Hz). Ϫ H3Oϩ quench: MS (70 eV): m/z (%):, 176 (11) [Mϩ], 161
(16) [Mϩ Ϫ Me], 101 (9) [Mϩ Ϫ H2SiMe3], 88 (21) [Mϩ Ϫ SiMe4],
73 (100) [SiMe3]. Ϫ Ethyl bromide quench: MS: vide supra. The
experiment was repeated in THF on larger scale and gave essen-
tially the same results. Removal of the solvent and crystallization
from pentane gave a mixture of 13 and 1a with THF coordinated
to the alkali silanyl compounds. Ϫ 1H NMR (300 MHz, C6D6):
δ ϭ 3.51 (m), 1.38 (m), 1.29 (s, 1 H), 0.47 (s, 18 H), 0.43 (s, 27 H).
F. Uhlig, P. Gspaltl, M. Trabi, E. Hengge, J. Organomet. Chem.
1995, 493, 33.
[15] [15a]
A. G. Brook, J. W. Harris, J. Lennon, M. El Sheik, J. Am.
[15b]
Chem. Soc. 1979, 101, 83. Ϫ
A. G. Brook, F. Abdesajken,
G. Gutekunst, N. Plavac, Organometallics 1982, 1, 994.
B. K. Campion, J. Falk, T. D. Tilley, J. Am. Chem. Soc. 1987,
109, 2049.
[16]
[17]
[18]
M. Ishikawa, J. Iyoda, H. Ikeda, K. Kotake, T. Hashimoto, M.
Kumada, J. Am. Chem. Soc. 1981, 103, 4845.
An X-ray structure of 9 reveals a bond angle between the two
hypersilyl groups and the central silicon atom of 125.7°. Ch.
Marschner, Ch. Kayser, P. Felde, to be published elsewhere.
The only other convenient access to 2-metallated trisilanes
which is known to the author employs transmetallation from
the respective mercury substituted compounds: A. Sekiguchi,
M. Nanjo, C. Kabuto, H. Sakurai, J. Am. Chem. Soc. 1995,
117, 4195.
1-Phenyltetramethyldisilanylpotassium (14): Compound 14 (200
mg, 0.75 mmol) was prepared from 2-phenylheptamethyltrisilane
in THF following the general procedure, with the variation that
tert-BuOK (85 mg, 0.75 mmol) was added in several portions over
two hours. Ϫ 29Si NMR (59.6 MHz, THF, D2O lock): δ ϭ Ϫ12.33,
Ϫ62.96. Ϫ H3Oϩ quench: MS (70 eV): m/z (%): 194 (21) [Mϩ], 179
(15) [Mϩ Ϫ Me], 135(83) [Mϩ Ϫ HSiMe2], 121 (21) [Mϩ Ϫ SiMe3],
105 (28) [Mϩ Ϫ HSiMe4], 73 (100) [SiMe3]. Ϫ Ethyl bromide
quench: MS (70 eV): m/z (%): 222 (20) [Mϩ], 207 (4) [Mϩ Ϫ Me],
193 (14) [Mϩ Ϫ Et], 149 (39) [Mϩ Ϫ SiMe3], 135 (44) [SiPhEt], 121
(100) [HSiPhMe], 105 (17) [SiPh], 73 (27) [SiMe3].
[19]
[20]
[21]
A. Fürstner, H. Weidmann, J. Organomet. Chem. 1988, 354, 15.
A. G. Brook, A. Baumegger, A. J. Lough, Organometallics 1992,
11, 310.
[22]
[23]
[24]
G. A. Olah, R. J. Hunadi, J. Am. Chem. Soc. 1980, 102, 6989
H. Gilman, C. L. Smith, J. Organomet. Chem. 1967, 8, 245.
M. Kumada, M. Ishikawa, S. Maeda, J. Organomet. Chem.
1964, 2, 478.
[25] [25a]
H. Bürger, W. Killian, J. Organomet. Chem. 1971, 26, 47.
H. C. Marsmann, W. Raml, E. Hengge, Z. Naturforsch.
[25b]
Ϫ
Ƞ In memoriam Prof. Edwin Hengge.
1981, 35b, 1541.
[1]
[26]
[27]
Presented in part at the XIth International Symposium on Or-
H. C. Marsmann in NMR Basic Principles and Progress 17,
29Si-NMR Spectroscopic Results, (Eds.: P. Diehl, E. Fluck, R.
Kosfeld), Springer-Verlag Berlin Heidelberg, 1981.
K. Krohn, K. Khanbabaee, Angew. Chem. 1994, 106, 100; An-
gew. Chem., Int. Ed. Engl. 1994, 33, 99.
[97197]
ganosilicon Chemistry, 1.Ϫ6. Sept. 1996, Montpellier, France.
[2]
[2a] H. Gilman, J. M. Holmes, C. L. Smith, Chem. Ind. (London)
[2b]
1965, 848. Ϫ
G. Gutekunst, A. G. Brook, J. Organomet.
Chem. 1982, 225, 1.
Using the term “hypersilyl” we follow the proposal of N. Wi-
[3]
226
Eur. J. Inorg. Chem. 1998, 221Ϫ226