Page 7 of 7
ACS Catalysis
2012, 41, 32-43; (f) Jakobs, R. T. M.; Sijbesma, R. P., Mechanical
13. Schmid, T. E.; Bantreil, X.; Citadelle, C. A.; Slawin, A. M. Z.;
Cazin, C. S. J., Phosphites as ligands in ruthenium-benzylidene
catalysts for olefin metathesis. Chem. Commun. 2011, 47, 7060-
7062.
Activation of a Latent Olefin Metathesis Catalyst and Persistence
of its Active Species in ROMP. Organometallics 2012, 31, 2476-
2481.
1
2
3
4
5
6
7
8
9
5. (a) Eivgi, O.; Lemcoff, N. G., Turning the Light On: Recent
Developments in Photoinduced Olefin Metathesis. Synthesis
2018, 50, 49-63; (b) Pinaud, J.; Trinh, T. K. H.; Sauvanier, D.;
Placet, E.; Songsee, S.; Lacroix-Desmazes, P.; Becht, J.-M.;
Tarablsi, B.; Lalevée, J.; Pichavant, L.; Héroguez, V.; Chemtob, A.,
In Situ Generated Ruthenium–Arene Catalyst for Photoactivated
Ring-Opening Metathesis Polymerization through Photolatent
N-Heterocyclic Carbene Ligand. Chem. Eur. J. 2018, 24, 337-341; (c)
Theunissen, C.; Ashley, M. A.; Rovis, T., Visible-Light-Controlled
Ruthenium-Catalyzed Olefin Metathesis. J. Am. Chem. Soc. 2019,
141, 6791-6796.
6. (a) Skowerski, K.; Wierzbicka, C.; Grela, K., Olefin
Metathesis Under Continuous Flow Mode. Curr. Org. Chem. 2013,
17, 2740-2748; (b) Drop, M.; Bantreil, X.; Grychowska, K.; Mahoro,
G. U.; Colacino, E.; Pawłowski, M.; Martinez, J.; Subra, G.; Zajdel,
P.; Lamaty, F., Continuous flow ring-closing metathesis, an
environmentally-friendly route to 2,5-dihydro-1H-pyrrole-3-
carboxylates. Green Chem. 2017, 19, 1647-1652; (c) Cambié, D.;
Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T.,
Applications of Continuous-Flow Photochemistry in Organic
Synthesis, Material Science, and Water Treatment. Chem. Rev.
2016, 116, 10276-10341; (d) Su, Y.; Straathof, N. J. W.; Hessel, V.;
Noël, T., Photochemical Transformations Accelerated in
Continuous-Flow Reactors: Basic Concepts and Applications.
Chem. Eur. J. 2014, 20, 10562-10589.
7. (a) Ben-Asuly, A.; Aharoni, A.; Diesendruck, C. E.; Vidavsky,
Y.; Goldberg, I.; Straub, B. F.; Lemcoff, N. G., Photoactivation of
Ruthenium Olefin Metathesis Initiators. Organometallics 2009,
28, 4652-4655; (b) Ginzburg, Y.; Anaby, A.; Vidavsky, Y.;
Diesendruck, C. E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N. G.,
Widening the Latency Gap in Chelated Ruthenium Olefin
Metathesis Catalysts. Organometallics 2011, 30, 3430-3437.
8. Ivry, E.; Frenklah, A.; Ginzburg, Y.; Levin, E.; Goldberg, I.;
Kozuch, S.; Lemcoff, N. G.; Tzur, E., Light- and Thermal-Activated
Olefin Metathesis of Hindered Substrates. Organometallics 2018,
37, 176-181.
9. (a) Levin, E.; Mavila, S.; Eivgi, O.; Tzur, E.; Lemcoff, N. G.,
Regioselective Chromatic Orthogonality with Light-Activated
Metathesis Catalysts. Angew. Chem. Int. Ed. 2015, 54, 12384-12388;
(b) Eivgi, O.; Sutar, R. L.; Reany, O.; Lemcoff, N. G., Bichromatic
Photosynthesis of Coumarins by UV Filter-Enabled Olefin
Metathesis. Adv. Synth. Catal. 2017, 359, 2352-2357; (c) Sutar, R.;
Sen, S.; Eivgi, O.; Segalovich, G.; Schapiro, I.; Reany, O.; Lemcoff,
N. G., Guiding a divergent reaction by photochemical control:
bichromatic selective access to levulinates and butenolides.
Chem. Sci. 2018, 9, 1368-1374.
14. Sutar, R. L.; Levin, E.; Butilkov, D.; Goldberg, I.; Reany, O.;
Lemcoff, N. G., A Light-Activated Olefin Metathesis Catalyst
Equipped with a Chromatic Orthogonal Self-Destruct Function.
Angew. Chem. Int. Ed. 2016, 55, 764-767.
15. (a) Patchornik, A.; Amit, B.; Woodward, R. B.,
Photosensitive protecting groups. J. Am. Chem. Soc. 1970, 92,
6333-6335; (b) Il'ichev, Y. V.; Schwörer, M. A.; Wirz, J.,
Photochemical Reaction Mechanisms of 2-Nitrobenzyl
Compounds: Methyl Ethers and Caged ATP. J. Am. Chem. Soc.
2004, 126, 4581-4595; (c) Solomek, T.; Mercier, S.; Bally, T.; Bochet,
C. G., Photolysis of ortho-nitrobenzylic derivatives: the
importance of the leaving group. Photochem. & Photobiol. Sci.
2012, 11, 548-555.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
16. Bertran-Vicente, J.; Schümann, M.; Schmieder, P.; Krause,
E.; Hackenberger, C. P. R., Direct access to site-specifically
phosphorylated-lysine peptides from
a solid-support. Org.
Biomol.Chem. 2015, 13, 6839-6843.
17. (a) Boydston, A. J.; Cao, B.; Nelson, A.; Ono, R. J.; Saha, A.;
Schwartz, J. J.; Thrasher, C. J., Additive manufacturing with
stimuli-responsive materials. J. Mater. Chem. A 2018, 6, 20621-
20645; (b) Nadgorny, M.; Ameli, A., Functional Polymers and
Nanocomposites for 3D Printing of Smart Structures and Devices.
ACS Appl. Mater. Interfaces 2018, 10, 17489-17507.
18. Weitekamp, R. A.; Atwater, H. A.; Grubbs, R. H.,
Photolithographic Olefin Metathesis Polymerization. J. Am.
Chem. Soc. 2013, 135, 16817-16820.
19. Trinh, T. K. H.; Schrodj, G.; Rigolet, S.; Pinaud, J.; Lacroix-
Desmazes, P.; Pichavant, L.; Héroguez, V.; Chemtob, A.,
Combining a ligand photogenerator and a Ru precatalyst: a
photoinduced approach to cross-linked ROMP polymer films.
RSC Adv. 2019, 9, 27789-27799.
20. (a) Vallons, K. A. M.; Drozdzak, R.; Charret, M.; Lomov, S.
V.; Verpoest, I., Assessment of the mechanical behaviour of glass
fibre composites with a tough polydicyclopentadiene (PDCPD)
matrix. Composites Part A 2015, 78, 191-200; (b) Vidavsky, Y.;
Navon, Y.; Ginzburg, Y.; Gottlieb, M.; Lemcoff, N. G., Thermal
properties
of
ruthenium
alkylidene-polymerized
dicyclopentadiene. Beilstein J. Org. Chem. 2015, 11, 1469-1474.
21. (a) Robertson, I. D.; Dean, L. M.; Rudebusch, G. E.; Sottos,
N. R.; White, S. R.; Moore, J. S., Alkyl Phosphite Inhibitors for
Frontal Ring-Opening Metathesis Polymerization Greatly
Increase Pot Life. ACS Macro Lett. 2017, 6, 609-612; (b) Robertson,
I. D.; Yourdkhani, M.; Centellas, P. J.; Aw, J. E.; Ivanoff, D. G.; Goli,
E.; Lloyd, E. M.; Dean, L. M.; Sottos, N. R.; Geubelle, P. H.; Moore,
J. S.; White, S. R., Rapid energy-efficient manufacturing of
polymers and composites via frontal polymerization. Nature 2018,
557, 223-227.
10. (a) Bantreil, X.; Schmid, T. E.; Randall, R. A. M.; Slawin, A.
M. Z.; Cazin, C. S. J., Mixed N-heterocyclic carbene/phosphite
ruthenium complexes: towards a new generation of olefin
metathesis catalysts. Chem. Commun. 2010, 46, 7115-7117; (b)
Lexer, C.; Burtscher, D.; Perner, B.; Tzur, E.; Lemcoff, N. G.;
Slugovc, C., Olefin metathesis catalyst bearing a chelating
phosphine ligand. J. Organomet. Chem. 2011, 696, 2466-2470.
11. (a) Guidone, S.; Songis, O.; Nahra, F.; Cazin, C. S. J.,
Conducting Olefin Metathesis Reactions in Air: Breaking the
Paradigm. ACS Catal. 2015, 5, 2697-2701; (b) Bantreil, X.; Poater,
A.; Urbina-Blanco, C. A.; Bidal, Y. D.; Falivene, L.; Randall, R. A.
M.; Cavallo, L.; Slawin, A. M. Z.; Cazin, C. S. J., Synthesis and
Reactivity of Ruthenium Phosphite Indenylidene Complexes.
Organometallics 2012, 31, 7415-7426.
TOC – Graphic
12. Eivgi, O.; Guidone, S.; Frenklah, A.; Kozuch, S.; Goldberg, I.;
Lemcoff, N. G., Photoactivation of Ruthenium Phosphite
Complexes for Olefin Metathesis. ACS Catal. 2018, 8, 6413-6418.
7
ACS Paragon Plus Environment