10.1002/chem.201803574
Chemistry - A European Journal
COMMUNICATION
Franzoni, C. Mazet, Org. Biomol. Chem. 2014, 12, 233-241. e) M.
Vilches-Herrera, L. Domke, A. Börner, ACS Catal. 2014, 4, 1706-1724.
f) G. Qiu, J. Wu, Org. Chem. Front. 2015, 2, 169-178. g) A. Vasseur, J.
Bruffaerts, I. Marek, Nature Chem. 2016, 8, 209-219. h) J. Bruffaerts, D.
Pierrot, I. Marek, Org. Biomol. Chem. 2016, 14, 10325-10330. i) H.
Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 2018,
4, 153-165.
The reaction of benzaldehyde with the doubly deuterium-
labeled diene [D]2-13a gave homoallylic alcohol [D]2-14a in ≤87%
purity, in which one deuterium atom was transferred to the
homoallylic methylene carbon, with no evidence of deuteration
at other sites [Eq. (6)]. This overall 1,4-deuterium shift is
consistent with the mechanism shown in Scheme 2 (see the
Supporting Information for details).
Finally, this process is not limited to aldehyde electrophiles.
Although cyclic imines (Scheme 1C) and ketones are not
suitable substrates, diene 15 reacted with the formaldimine
derived from cracking of 1,3,5-tris(4-methoxyphenyl)-1,3,5-
triazinane to give homoallylic amine 16 in 52% yield [Eq. (7)].
The inclusion of 3 Å molecular sieves was beneficial in
increasing the yield of this reaction.
[2]
For selected, recent examples of chain walking of alkylmetal species,
see: a) G. C. Tsui, M. Lautens, Angew. Chem., Int. Ed. 2010, 49, 8938-
8941. b) A. Renaudat, L. Jean-Gérard, R. Jazzar, C. E. Kefalidis, E.
Clot, O. Baudoin, Angew. Chem., Int. Ed. 2010, 49, 7261-7265. c) E. W.
Werner, T.-S. Mei, A. J. Burckle, M. S. Sigman, Science 2012, 338,
1455-1458. d) W.-C. Lee, C.-H. Wang, Y.-H. Lin, W.-C. Shih, T.-G. Ong,
Org. Lett. 2013, 15, 5358-5361. e) A. Millet, P. Larini, E. Clot, O.
Baudoin, Chem. Sci. 2013, 4, 2241-2247. f) T.-S. Mei, H. H. Patel, M. S.
Sigman, Nature 2014, 508, 340-344. g) T. Yamakawa, N. Yoshikai,
Chem. Asian. J. 2014, 9, 1242-1246. h) J. S. Bair, Y. Schramm, A. G.
Sergeev, E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014,
136, 13098-13101. i) E. Larionov, L. Lin, L. Guénée, C. Mazet, J. Am.
Chem. Soc. 2014, 136, 16882-16894. j) C. M. Filloux, T. Rovis, J. Am.
Chem. Soc. 2015, 137, 508-517. k) L. Lin, C. Romano, C. Mazet, J. Am.
Chem. Soc. 2016, 138, 10344-10350. l) H. H. Patel, M. S. Sigman, J.
Am. Chem. Soc. 2016, 138, 14226-14229. m) S. Dupuy, K.-F. Zhang,
A.-S. Goutierre, O. Baudoin, Angew. Chem., Int. Ed. 2016, 55, 14793-
14797. n) Y. He, Y. Cai, S. Zhu, J. Am. Chem. Soc. 2017, 139, 1061-
1064. o) F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature
2017, 545, 84-88. p) Y. Ebe, M. Onoda, T. Nishimura, H. Yorimitsu,
Angew. Chem., Int. Ed. 2017, 56, 5607-5611. q) M. Gaydou, T.
Moragas, F. Juliá-Hernández, R. Martin, J. Am. Chem. Soc. 2017, 139,
12161-12164. r) F. Zhou, J. Zhu, Y. Zhang, S. Zhu, Angew. Chem., Int.
Ed. 2018, 57, 4058-4062. s) C. Romano, C. Mazet, J. Am. Chem. Soc.
2018, 140, 4743-4750.
[3]
For metal migrations by iterative allylic C–H activations/hydride
reinsertions of zirconacyclopropanes, see: a) N. Chinkov, S. Majumdar,
I. Marek, J. Am. Chem. Soc. 2002, 124, 10282-10283. b) N. Chinkov, S.
Majumdar, I. Marek, J. Am. Chem. Soc. 2003, 125, 13258-13264. c) N.
Chinkov, A. Levin, I. Marek, Angew. Chem., Int. Ed. 2006, 45, 465-468.
d) A. Masarwa, D. Didier, T. Zabrodski, M. Schinkel, L. Ackermann, I.
Marek, Nature 2014, 505, 199-203. e) A. Vasseur, L. Perrin, O.
Eisenstein, I. Marek, Chem. Sci. 2015, 6, 2770-2776.
In conclusion, we have reported the rhodium-catalyzed
reductive nucleophilic allylation of aldehydes or an imine with
1,3-dienes, in which carbon–carbon bond formation occurs at a
site remote from the initiation site by the overall net migration of
allylrhodium species. This study illustrates the potential utility of
allylmetal chain walking in remote C‒H functionalization, which
complements much more well-known alkylmetal chain walking
processes. Compared with our previous work (Scheme 1C),[4b]
we have shown that chain walking can proceed through greater
distances (up to eight methylene units). Furthermore, an
expanded range of functional groups was shown to promote
chain walking, which includes esters, amides, and
(hetero)arenes. Our future work will include the development of
enantioselective variants of this process.[11]
[4]
[5]
a) T. Smejkal, H. Han, B. Breit, M. J. Krische, J. Am. Chem. Soc. 2009,
131, 10366-10367. b) J. I. Martínez, J. J. Smith, H. B. Hepburn, H. W.
Lam, Angew. Chem., Int. Ed. 2016, 55, 1108-1112.
a) Y. Luo, H. B. Hepburn, N. Chotsaeng, H. W. Lam, Angew. Chem., Int.
Ed. 2012, 51, 8309-8313. b) H. B. Hepburn, N. Chotsaeng, Y. Luo, H.
W. Lam, Synthesis 2013, 45, 2649-2661. c) H. B. Hepburn, H. W. Lam,
Angew. Chem., Int. Ed. 2014, 53, 11605-11610. d) M. Callingham, B. M.
Partridge, W. Lewis, H. W. Lam, Angew. Chem., Int. Ed. 2017, 56,
16352-16356.
Received:
((will
be
filled
in
by
the
editorial
staff))
[6]
[7]
M. Kimura, D. Nojiri, M. Fukushima, S. Oi, Y. Sonoda, Y. Inoue, Org.
Lett. 2009, 11, 3794-3797.
Published online on ((will be filled in by the editorial staff))
The relative configurations of products 2f and 14a were determined by
converting them into cyclic derivatives, followed by 1H NMR analysis of
vicinal coupling constants. See the Supporting Information for details.
The relative configurations of the remaining products were assigned by
analogy.
Acknowledgements
This work was supported by the Engineering and Physical
Sciences Research Council [grant numbers EP/M50810X/1 and
EP/K504348/1]; the Basque Country government; the
Leverhulme Trust [grant number RPG-2016-341]; and
GlaxoSmithKline.
[8]
[9]
Under different reaction conditions, the reaction of rhodium hydrides
with activated 1,3-dienes has been proposed to occur via 1,4-
hydrorhodation. See: R. Dada, Z. Wei, R. Gui, R. J. Lundgren, Angew.
Chem., Int. Ed. 2018, 57, 3981-3984.
These other products were generally not isolated, except in the case of
the reaction producing 14a (see Scheme 4). See the Supporting
Information for details.
Keywords: allylation • chain walking • homogeneous catalysis •
isomerization • rhodium
[10] The reasons for halogen-containing substrates being ineffective are not
currently known, but one possibility is undesired oxidative addition of
Rh(I) with the carbon–halogen bond. For selected examples of
oxidation addition of Rh(I) with alkyl or aryl halides, see: a) S. Gatard, R.
Çelenligil-Çetin, C. Guo, B. M. Foxman, O. V. Ozerov, J. Am. Chem.
Soc. 2006, 128, 2808-2809. b) C. Tejel, M. A. Ciriano, J. A. López, S.
[1]
For selected reviews: a) R. Breslow, Acc. Chem. Res. 1980, 13, 170-
177. b) H. Schwarz, Acc. Chem. Res. 1989, 22, 282-287. c) H. Jiang, L.
Albrecht, K. A. Jorgensen, Chem. Sci. 2013, 4, 2287-2300. d) I.
This article is protected by copyright. All rights reserved.