June 1998
SYNLETT
605
2, and 3) and the preference for naturally occurring isomer, 10, would be
small. Based on AM1 level calculations, 11 was found to be the most
preferential isomer. These results were coincident to the experimental
observation of 1. It is considered that the keto-acetal 2 would be
stabilized by the anomeric effect enhanced by the presence of α-ketone,
while methyl compound 1 would be destabilized by the repulsion of the
central ring against the methyl or the hydroxyl group at C-15, as well as
the lack of above α-keto enhanced anomeric effect. Furthermore, the
Fehr, T.; Keller-Juslen, C.; King, H. D.; Hans-Rudolf, L; Kuhn,
M.; Wartburg, A. J. Antibiot. 1979, 32, 535. e) Liu, C.-M.;
Hermann, T. E.; Prosser, B. L. T.; Palleroni, N. J.; Westley, J. W.;
Miller, P. A. J. Antibiot. 1981, 34, 133. f) Westley, J. W.; Evans, R.
H., Jr.; Sello, L. H.; Troupe, N.; Liu, C.; Blount, J. F.; Pitcher, R.
G.; Williams, T. H.; Miller, P. A. J. Antibiot. 1981, 34, 139. g) Hu,
T.; Curtis, J. M.; Oshima, Y.; Quilliam, M. A.; Walter, J. A.;
Watson-Wright, J. L. C. J. Chem. Soc., Chem. Commun. 1995,
2159. Hu, T.; Curtis, J. M.; Walter, J. A.; Wright, J. L. C.
Tetrahedron Lett. 1996, 37, 7671.
hydrogen bonding of the hydroxyl group at C-15 with the
12)
tetrahydropyranyl oxygen atom might probably exist in 9.
The
isomerization ratios between 1 and 9 were slightly different in CDCl
and THF due to the difference in solvation effect. It was realized that 9
3
2)
3)
Delongchamps, P. Stereoelectronic Effects in Organic Chemistry;
Pergamon Press: Oxford, pp. 4-53, 1983.
increased in relatively low dielectric solvent CDCl (ε=4.7), compared
3
a) Horita, K.; Nagato, S.; Oikawa, Y.; Yonemitsu, O. Tetrahedron
Lett. 1987, 28, 3253. b) Perron, F.; Albizati, K. F. J. Org. Chem.
1989, 54, 2047. c) Brimble, M. A.; Williams, G. M. Tetrahedron
Lett. 1990, 31, 3043. Brimble, M. A.; Williams, G. M. J. Org.
Chem. 1992, 57, 5818. d) McGarvey, G. J.; Stepanian, M. W.
Tetrahedron Lett. 1996, 37, 5461. McGarvey, G. J.; Stepanian, M.
W.; Bressette, A. R.; Ellena, J. F. Tetrahedron Lett. 1996, 37,
5465. e) For a review, see: Vaillancourt, V.; Pratt, N. E.; Perron, F.;
Albizati, K. F. The Total Synthesis of Natural Products 1992, 8,
533-691.
to THF (ε=7.4). In consequence, extreme predominance of 1 would be
lost over the isomers and would be isomerized partly to 9 easily.
4)
a) Uemura, D; Chou, T.; Haino, T.; Nagatsu, A.; Fukuzawa, S.;
Zheng, S.; Chen, H. J. Am. Chem. Soc. 1995, 117, 1155. b) Chou,
T.; Haino, T.; Kuramoto, M.; Uemura, D. Tetrahedron Lett. 1996,
37, 4027.
5)
6)
7)
Noda, T; Ishiwata, A.; Uemura, S.; Sakamoto, S.; Hirama, M.
Synlett 1998, 298.
Sugimoto, T.; Ishihara, J.; Murai, A. Tetrahedron Lett. 1997, 38,
7379.
Exposure of 3 to a mixture of Bu NF (3.4 eq) and AcOH (10 eq)
4
in THF at 25 °C for 1.5 h resulted in no reaction, whereas
treatment with Bu NF (10 eq) and AcOH (10 eq) afforded
4
complex mixtures.
8)
9)
All structures in the Table show the optimum conformations.
Based on the calculation, the central five-membered ring is able to
have two envelope conformations, which are estimated to have
almost the same energy. The H-NMR measurements at variable
temperatures supported the existence of two conformers of the
tetrahydrofuran ring in equilibrium.
1
Kirby, A. J The Anomeric Effect and Related Stereoelectronic
Effects at Oxygen; Springer-Verlag, Berlin Heidelberg New York
pp. 20-23, 1983.
1
10) The ratios of the mixture were determined by H-NMR analysis.
1
13
It was thus concluded that the ketone 2 would be more available as a
synthetic key intermediate, whereas the corresponding methyl
compound 1 has an ability to isomerize readily in the presence of
11) The structure of 9 was determined by H- and C-NMR, NOE,
COSY, HMBS, and HSQC spectra. The selected NOE correlations
of 9 are shown as follows:
13)
acid.
Acknowledgements. We are grateful to Dr. H. Yamada, Tokyo Institute
of Technology for helpful discussions.
References and Notes
22
1
1)
a) Kinashi, H.; Otake, N.; Yonehara, H.; Sato, S.; Saito, Y.
Tetrahedron Lett. 1973, 4955. b) Occolowitz, J. L.; Berg, D. H.;
Dobono, M.; Hamill, R. L. Biomed. Mass. Spectrosc. 1976, 3, 272.
c) Westley, J. W.; Blount, J. F.; Evans, R. H.; Liu, C. M. J.
Antibiot. 1977, 30, 610. d) Keller-Juslen, C.; King, H. D.; Kuhn,
M.; Loosli, H. R.; Von Wartburg, A. J. Antibiot. 1978, 31, 820.
9: colorless oil, [α]
-34 (c 0.17, CH OH); H-NMR (400 MHz,
3
D
CDCl ), δ 1.20 (3H, s, H-37), 1.36 (1H, m, H-22), 1.45 (1H, m, H-
3
13ax), 1.47 (1H, m, H-13eq), 1.54 (1H, m, H-22), 1.58 (1H, m, H-
14eq), 1.59 (1H, m, H-11), 1.64 (1H, m, H-17α), 1.64 (1H, m, H-
20), 1.67 (1H, m, H-21), 1.68 (1H, m, H-11), 1.77 (1H, m, H-21),
1.79 (1H, m, H-18α), 1.93 (1H, dt, J= 4.9, 13.2 Hz, H-14ax), 2.24