12514
J. Am. Chem. Soc. 1997, 119, 12514-12524
Multiply Stranded and Multiply Encircled Pseudorotaxanes†
Peter R. Ashton,‡ Matthew C. T. Fyfe,‡ Peter T. Glink,‡ Stephan Menzer,§
J. Fraser Stoddart,*,‡,| Andrew J. P. White,§ and David J. Williams§
Contribution from The School of Chemistry, The UniVersity of Birmingham,
Edgbaston, Birmingham B15 2TT, UK, and The Chemical Crystallography Laboratory,
Department of Chemistry, Imperial College, South Kensington, London SW7 2AY, UK
ReceiVed May 7, 1997. ReVised Manuscript ReceiVed October 16, 1997X
Abstract: The self-assembly of four multicomponent rotaxane-like complexes, in which either (a) three or four dibenzo-
[24]crown-8 rings encircle threadlike oligoammonium cations [PhCH2(NH2+CH2C6H4CH2)nNH2+CH2Ph] (n ) 2 or
3) to form multiply encircled pseudorotaxanes, or (b) three or four dibenzylammonium ions are threaded simultaneously
through large macrocyclic polyethers, Viz., tris-p-phenylene[51]crown-15 and tetrakis-p-phenylene[68]crown-20, to
give multiply stranded pseudorotaxanes, is described. These supramolecular entities are created on account of
stabilizing [N+sH‚‚‚O] and [CsH‚‚‚O] hydrogen bonds, supplemented occasionally by aromatic face-to-face and
edge-to-face interactions, and [CsH‚‚‚F] intermolecular bonds. Evidence for the existence of these diverse
pseudorotaxane architectures in solution, in the solid state, and in some cases, in the “gas phase”, is provided by 1H
NMR spectroscopy, X-ray crystallography, and mass spectrometry, respectively.
Introduction
Scheme 1. A Generic [2]Pseudorotaxane, Created When a
Macrocyclic Beadlike Component (open square) Encircles a
Threadlike Component (black bar)a
One of the major areas of investigation in modern synthetic
chemistry is the construction1 of thermodynamically stable
supramolecular2 aggregates and arrays in a controlled and
predictable manner utilizing self-assembly processes3 that rely
upon noncovalent bonding interactions.4 One particularly
interesting class of supramolecular aggregates is the so-called
pseudorotaxanes.5 These supramolecular entities are comprised
(Scheme 1) of one (or more) threadlike component(s) which is
(are) encircled by one (or more) beadlike component(s). They
are promising prototypes for a variety of nanoscopic machinelike
systems,6 such as switches7 and shuttles.8 Until recently,
a The prefix of an [n]pseudorotaxane indicates that the complex is
comprised of n components.
pseudorotaxanes have been prepared most conveniently by
utilizing one of the following systems: (a) the van der Waals
interactions9 between cyclodextrin derivatives and hydrophobic
guests, (b) the metal-ligand interactions10 between metal ions,
such as copper(I), and bipyridine-derived beads/threads, and (c)
the attraction between π-electron-rich11 (or π-electron-defi-
cient12) macrocyclic hosts and π-electron-deficient (or π-electron-
rich) threadlike guests. In the past few years, we have
developed13-16 extremely simple self-assembling systems which
produce pseudorotaxane complexes. They are based upon the
association between secondary dialkylammonium ions, such as
the linear threadlike cationic salts, dibenzylammonium
† Molecular Meccano, Part 24. For Part 23, see: Ashton, P. R.; Boyd,
S. E.; Menzer, S.; Pasini, D.; Raymo, F. M.; Spencer, N.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J.; Wyatt, P. G. J. Am. Chem. Soc., in press.
‡ University of Birmingham.
§ Imperial College.
| Address for correspondence: Department of Chemistry and Biochem-
istry, University of California at Los Angeles, 405 Hilgard Avenue, Los
Angeles, CA 90095.
X Abstract published in AdVance ACS Abstracts, December 15, 1997.
(1) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393-401.
(2) Lehn, J.-M. Supramolecular Chemistry-Concepts and PerspectiVes;
VCH: Weinheim, 1995.
(3) Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35,
1154-1196.
(4) Some recent examples serve to highlight the kinds of approaches
being taken. See: (a) Fujita, M.; Ogura, D.; Miyazawa, M.; Oka, H.;
Yamaguchi, K.; Ogura, K. Nature (London) 1995, 378, 469-471. (b)
Hartgerink, J. D.; Granja, J. R.; Milligan, R. A.; Ghadiri, M. R. J. Am.
Chem. Soc. 1996, 118, 43-50. (c) Zimmerman, S. C.; Zeng, F.; Reichert,
D. E. C.; Kolotuchin, S. V. Science 1996, 271, 1095-1098. (d) Funeriu,
D. P.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem. Eur. J. 1997, 3, 99-104.
(e) Meissner, R.; Garcias, X.; Mecozzi, S.; Rebek, J., Jr. J. Am. Chem.
Soc. 1997, 119, 77-85. (f) Whang, D.; Kim, K. J. Am. Chem. Soc. 1997,
119, 451-452.
(5) Amabilino, D. B.; Anelli, P.-L.; Ashton, P. R.; Brown, G. R.;
Co´rdova, E.; God´ınez, L. A.; Hayes, W.; Kaifer, A. E.; Philp, D.; Slawin,
A. M. Z.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Williams, D. J. J. Am.
Chem. Soc. 1995, 117, 11142-11170.
(9) Wenz, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 803-822.
(10) Baxter, P. N. W.; Sleiman, H.; Lehn, J.-M.; Rissanen, K. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1294-1296.
(11) For instance, see: Ashton, P. R.; Ballardini, R.; Balzani, V.;
Belohradsky, M.; Gandolfi, M. T.; Philp, D.; Prodi, L.; Raymo, F. M.;
Reddington, M. V.; Spencer, N.; Stoddart, J. F.; Venturi, M.; Williams, D.
J. J. Am. Chem. Soc. 1996, 118, 4931-4951.
(12) For leading references, see: Asakawa, M.; Ashton, P. R.; Brown,
G. R.; Hayes, W.; Menzer, S.; Stoddart, J. F.; White, A. J. P.; Williams, D.
J. AdV. Mater. 1996, 8, 37-41.
(13) Ashton, P. R.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Schiavo,
C.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams,
D. J. Chem. Eur. J. 1996, 2, 709-728.
(6) For leading references, see: Credi, A.; Balzani, V.; Langford, S. J.;
Stoddart, J. F. J. Am. Chem. Soc. 1997, 119, 2679-2681.
(7) Co´rdova, E.; Bissell, R. A.; Kaifer, A. E.; Stoddart, J. F. Nature
(London) 1994, 369, 133-137.
(8) Anelli, P.-L.; Asakawa, M.; Ashton, P. R.; Bissell, R. A.; Clavier,
G.; Go´rski, R.; Kaifer, A. E.; Langford, S. J.; Mattersteig, G.; Menzer, S.;
Philp, D.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.;
Williams, D. J. Chem. Eur. J. 1997, 3, 1113-1135.
(14) Ashton, P. R.; Glink, P. T.; Stoddart, J. F.; Tasker, P. A.; White,
A. J. P.; Williams, D. J. Chem. Eur. J. 1996, 2, 729-736.
(15) Ashton, P. R.; Collins, A. N.; Fyfe, M. C. T.; Glink, P. T.; Menzer,
S.; Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1997, 36,
59-62.
(16) Ashton, P. R.; Glink, P. T.; Mart´ınez-D´ıaz, M.-V.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1996, 35,
1930-1933.
S0002-7863(97)01480-7 CCC: $14.00 © 1997 American Chemical Society