K. Shimoda et al. / Tetrahedron Letters 49 (2008) 601–604
603
Table 2
(3H, s, H-18), 2.00 (1H, dd, J = 15.6, 9.2 Hz, H-14a), 2.15 (3H, s, CH3
in 10Ac), 2.23 (1H, dd, J = 15.6, 9.2 Hz, H-14b), 2.37 (3H, s, CH3 in
4Ac), 2.58 (1H, m, H-6a), 3.29–3.78 (8H, m, H-200, 2a, 3a, 4a, 5a, 6a),
3.90 (1H, d, J = 7.2 Hz, H-3), 4.18 (3H, m, H-7, 20), 4.75 (1H, d,
J = 5.2 Hz, H-20), 4.95 (1H, d, J = 3.2 Hz, H-1a), 5.01 (1H, d,
J = 9.2 Hz, H-5), 5.63 (2H, m, H-2, 30), 6.15 (1H, t, J = 9.2 Hz, H-13),
6.21 (1H, s, H-10), 7.28 (1H, t, J = 7.6 Hz, p-H in Ph), 7.39–7.58 (9H,
m, m-H in NBz, p-H in NBz, m-H in OBz, o-H in Ph, m-H in Ph), 7.65
(1H, t, J = 7.6 Hz, p-H in OBz), 7.85 (2H, d, J = 8.0 Hz, o-H in NBz),
8.10 (2H, d, J = 8.0 Hz, o-H in OBz); 13C NMR (100 MHz, CD3OD,
d in ppm): d 11.3 (C-19), 14.7 (C-18), 20.6 (CH3 in 10Ac), 22.1 (C-16),
23.1 (CH3 in 4Ac), 26.7 (C-17), 34.1 (C-6), 36.3 (C-14), 44.5 (C-3,
C-15), 57.2 (C-30), 57.7 (C-8), 62.4 (C-6a), 65.9 (C-200), 71.4 (C-7,
C-13), 72.1 (C-4a), 73.6 (C-5a), 74.1 (C-2a), 74.8 (C-20), 75.1 (C-3a),
75.7 (C-2), 76.6 (C-10), 77.2 (C-20), 78.8 (C-1), 81.8 (C-4), 85.0 (C-5),
100.6 (C-1a), 128.3 (o-C in NBz, o-C in Ph), 128.9 (p-C in NBz), 129.5
(m-C in OBz, m-C in Ph), 131.1 (m-C in NBz, q-C in OBz), 132.7 (o-C
in OBz, p-C in Ph), 134.1 (C-11), 134.5 (q-C in Ph), 135.4 (p-C in
OBz), 139.8 (q-C in NBz), 142.1 (C-12), 167.4 (C@O in OBz), 170.1
(C@O in NBz), 170.9 (C-100), 171.3 (C@O in 4Ac), 171.9 (C@O in
10Ac), 174.3 (C-10), 203.2 (C-9). Product 5: HRFABMS: m/z
1258.3451 [M+Na]+; 1H NMR (CD3OD): d 1.10 (3H, s, H-16), 1.16
(3H, s, H-17), 1.78 (3H, s, H-19), 1.81 (1H, m, H-6b), 1.87 (3H, s,
H-18), 2.01 (1H, dd, J = 15.4, 9.2 Hz, H-14a), 2.15 (3H, s, CH3 in
10Ac), 2.23 (1H, dd, J = 15.4, 9.2 Hz, H-14b), 2.37 (3H, s, CH3 in
4Ac), 2.58 (1H, m, H-6a), 3.30–3.79 (14H, m, H-200, 2a, 2b, 3a, 3b, 4a,
4b, 5a, 5b, 6a, 6b), 3.90 (1H, d, J = 7.2 Hz, H-3), 4.19 (3H, m, H-7,
20), 4.75 (1H, d, J = 5.2 Hz, H-20), 4.97 (1H, d, J = 3.2 Hz, H-1a),
5.01 (1H, d, J = 9.0 Hz, H-5), 5.22 (1H, d, J = 3.6 Hz, H-1b), 5.62
(2H, m, H-2, 30), 6.15 (1H, t, J = 9.0 Hz, H-13), 6.21 (1H, s, H-10),
7.28 (1H, t, J = 7.2 Hz, p-H in Ph), 7.38–7.59 (9H, m, m-H in NBz,
p-H in NBz, m-H in OBz, o-H in Ph, m-H in Ph), 7.65 (1H, t,
J = 7.6 Hz, p-H in OBz), 7.85 (2H, d, J = 7.6 Hz, o-H in NBz), 8.10
(2H, d, J = 7.6 Hz, o-H in OBz); 13C NMR (CD3OD): d 11.3 (C-19),
14.7 (C-18), 20.6 (CH3 in 10Ac), 22.2 (C-16), 23.1 (CH3 in 4Ac), 26.7
(C-17), 34.2 (C-6), 36.3 (C-14), 44.5 (C-3, C-15), 57.2 (C-30), 57.7
(C-8), 62.4 (C-6b), 62.5 (C-6a), 65.9 (C-200), 71.4 (C-7, C-13), 72.0
(C-4b), 73.3 (C-5a), 73.9 (C-2a), 74.8 (C-20), 75.1 (C-2b, C-3a), 75.3
(C-3b, C-5b), 75.7 (C-2), 76.6 (C-10), 77.2 (C-20), 78.8 (C-1), 81.0
(C-4a), 81.8 (C-4), 85.0 (C-5), 100.5 (C-1a), 100.7 (C-1b), 128.3 (o-C in
NBz, o-C in Ph), 128.9 (p-C in NBz), 129.6 (m-C in OBz, m-C in Ph),
131.2 (m-C in NBz, q-C in OBz), 132.7 (o-C in OBz, p-C in Ph), 134.1
(C-11), 134.5 (q-C in Ph), 135.4 (p-C in OBz), 139.9 (q-C in NBz),
142.2 (C-12), 167.5 (C@O in OBz), 170.0 (C@O in NBz), 170.9 (C-100),
171.3 (C@O in 4Ac), 172.0 (C@O in 10Ac), 174.3 (C-10), 203.2 (C-9).
Product 6: HRFABMS: m/z 1420.3877 [M+Na]+; 1H NMR
(CD3OD): d 1.09 (3H, s, H-16), 1.16 (3H, s, H-17), 1.78 (3H, s, H-
19), 1.81 (1H, m, H-6b), 1.87 (3H, s, H-18), 2.00 (1H, dd, J = 15.6,
9.2 Hz, H-14a), 2.15 (3H, s, CH3 in 10Ac), 2.24 (1H, dd, J = 15.6,
9.2 Hz, H-14b), 2.37 (3H, s, CH3 in 4Ac), 2.58 (1H, m, H-6a), 3.29–
3.80 (20H, m, H-200, 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, 4c, 5a, 5b, 5c, 6a, 6b,
6c), 3.90 (1H, d, J = 7.0 Hz, H-3), 4.17 (3H, m, H-7, 20), 4.75 (1H, d,
J = 5.4 Hz, H-20), 4.98 (1H, d, J = 3.2 Hz, H-1a), 5.00 (1H, d,
J = 9.2 Hz, H-5), 5.19 (1H, d, J = 3.6 Hz, H-1b), 5.23 (1H, d,
J = 3.6 Hz, H-1c), 5.63 (2H, m, H-2, 30), 6.15 (1H, t, J = 9.2 Hz, H-
13), 6.21 (1H, s, H-10), 7.28 (1H, t, J = 7.3 Hz, p-H in Ph), 7.40–7.59
(9H, m, m-H in NBz, p-H in NBz, m-H in OBz, o-H in Ph, m-H in
Ph), 7.66 (1H, t, J = 7.6 Hz, p-H in OBz), 7.85 (2H, d, J = 8.0 Hz, o-H
in NBz), 8.10 (2H, d, J = 7.6 Hz, o-H in OBz); 13C NMR (CD3OD): d
11.3 (C-19), 14.7 (C-18), 20.7 (CH3 in 10Ac), 22.1 (C-16), 23.1 (CH3 in
4Ac), 26.7 (C-17), 34.1 (C-6), 36.3 (C-14), 44.6 (C-3, C-15), 57.1
(C-30), 57.7 (C-8), 62.3 (C-6b, C-6c), 62.5 (C-6a), 66.0 (C-200), 71.4
(C-7, C-13), 71.9 (C-4c), 73.5 (C-5a), 74.0 (C-2a), 74.4 (C-5b), 74.7
(C-2b), 74.8 (C-20), 75.1 (C-2c, C-3a), 75.3 (C-3b, C-3c, C-5c), 75.7
(C-2), 76.6 (C-10), 77.2 (C-20), 78.8 (C-1), 81.1 (C-4a, C-4b), 81.8
(C-4), 85.0 (C-5), 100.5 (C-1a), 100.6 (C-1b, C-1c), 128.3 (o-C in NBz,
o-C in Ph), 129.0 (p-C in NBz), 129.5 (m-C in OBz, m-C in Ph), 131.2
(m-C in NBz, q-C in OBz), 132.7 (o-C in OBz, p-C in Ph), 134.1
IC50 values of paclitaxel and paclitaxel–sugar conjugates 4–8a
Cell line Paclitaxel (nM) 4 (nM) 5 (nM) 6 (nM) 7 (nM) 8 (nM)
KF
131
170
855
1320
1906
2152
HAC-2 >3000
>3000 >3000 >3000 >3000 >3000
a
IC50 values in KF or HAC-2 ovarian cancer cells.
high water-solubility, were synthesized by chemo-enzymatic
procedures, including enzymatic glycosylations with a-glu-
cosidase and CGTase. Recently, Mizukami and co-workers
reported that the water-solubility of curcumin was drasti-
cally enhanced by a glycosyl conjugation.5 The water-solu-
bility of curcumin digentiobioside was 20 million-fold
higher than that of curcumin. In this study, glycosyl conju-
gation effectively enhanced the water-solubility of paclitaxel,
for example, the water-solubility of 7-glycolylpaclitaxel 200-
O-a-glucopentaoside, which has five glucose residues, was
6.8 thousand-fold higher than that of paclitaxel. We should
emphasize that paclitaxel–sugar conjugates with a shorter
saccharide at C-7 position would be useful water-soluble
antitumor agents, that is, 7-glycolylpaclitaxel 200-O-a-gluco-
side and 7-glycolylpaclitaxel 200-O-a-glucobioside showed
strong cytotoxicity against KF human ovarian cancer cells.
Also paclitaxel derivatives with a longer oligosaccharide
chain at C-7 position would act as potential prodrugs with
a low cytotoxicity. The present chemo-enzymatic method
is very useful for the practical preparation of ester-linked
drug-oligosaccharide conjugates as highly water-soluble
and inactive derivatives. Further studies on the thera-
peutic value of paclitaxel–sugar conjugates and on their
hydrolysis process in the living body are currently in
progress.
References and notes
1. Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed.
Engl. 1994, 33, 15.
2. (a) Greenwald, R. B.; Gilbert, C. W.; Pendri, A.; Conover, C. D.; Xia,
J.; Martinez, A. J. Med. Chem. 1996, 39, 424; (b) Hayashi, Y.;
Skwarczynski, M.; Hamada, Y.; Sohma, Y.; Kimura, T.; Kiso, Y. J.
Med. Chem. 2003, 46, 3782; (c) Bradley, M. O.; Webb, N. L.;
Anthony, F. H.; Devanesan, P.; Witman, P. A.; Hemamalini, S.;
Chander, M. C.; Baker, S. D.; He, L. F.; Horwitz, S. B.; Swindell, C.
S. Clin. Cancer Res. 2001, 7, 3229; (d) Battaglia, A.; Guerrini, A.;
Baldelli, E.; Fontana, G.; Varchi, G.; Samori, C.; Bombardelli, E.
Tetrahedron Lett. 2006, 47, 2667.
3. (a) Khmelnitsky, Y. L.; Budde, C.; Arnold, J. M.; Usyatinsky, A.;
Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1997, 119, 11554; (b)
Luo, Y.; Prestwich, G. D. Bioconjugate Chem. 1999, 10, 755; (c) Luo,
Y.; Ziebell, M. R.; Prestwich, G. D. Biomacromolecules 2000, 1, 208;
(d) Skwarczynski, M.; Hayashi, Y.; Kiso, Y. J. Med. Chem. 2006, 49,
7253.
4. (a) Gonsho, A.; Irie, K.; Susaki, H.; Iwasawa, H.; Okuno, S.;
Sugawara, T. Biol. Pharm. Bull. 1994, 17, 275; (b) Hashida, M.;
Hirabayashi, H.; Nishikawa, M.; Takakura, Y. J. Control. Release
1997, 46, 129.
5. Kaminaga, Y.; Nagatsu, A.; Akiyama, T.; Sugimoto, N.; Yamazaki,
T.; Maitani, T.; Mizukami, H. FEBS Lett. 2003, 555, 311.
6. Spectral data for 4–8; product 4: HRFABMS: m/z 1096.3050
[M+Na]+; 1H NMR (400 MHz, CD3OD, d in ppm): d 1.09 (3H, s,
H-16), 1.15 (3H, s, H-17), 1.78 (3H, s, H-19), 1.81 (1H, m, H-6b), 1.87