12012
J. Am. Chem. Soc. 1997, 119, 12012-12013
Synthetic Study of Kedarcidin Chromophore:
Revised Structure
Shinji Kawata, Shukuko Ashizawa, and Masahiro Hirama*
Department of Chemistry, Graduate School of Science
Tohoku UniVersity, Sendai 980-77, Japan
ReceiVed September 15, 1997
Kedarcidin is a new chromoprotein antitumor antibiotic family
consisting of a carrier apoprotein and a cytotoxic nine-membered
enediyne chromophore.1 Although the naked chromophore is
highly unstable, its structure including the absolute configuration
was described as 1 in 1993.2 Because of its unusual structure,
extremely potent antitumor activity, and high degree of sequence
specificity in DNA cleavage,3 we attempted to synthesize this
chromophore. The core moiety of ent-1 has recently been
stereoselectively synthesized.4,5 In this communication, we
describe the synthesis of the chloroazatyrosyl naphthoamide
fragment 2 of ent-1. We demonstrate that the fragment degraded
from the chromophore is not an R-amino acid derivative but
â-amino ester 3 and that the structure of kedarcidin chromophore
should be revised to be 27.
Scheme 1a
An efficient route to the polysubstituted naphthoic acid 11
was first established (Scheme 1). Methyl gallate (4) was
regioselectively O-alkylated using isopropyl iodide after ac-
etalization of the vicinal dihydroxy group in 72% overall yield.6
Regioselective bromination7 of phenol 5 followed by methy-
lation of the two phenolic hydroxy groups yielded appropriately
functionalized benzoate 6. Homologation of ester 6 via Wolff
rearrangement gave phenylacetate 7. The Heck reaction of 7
with tert-butyl acrylate afforded the R,â-unsaturated ester 8.8
After methyl ester 8 was converted to acid chloride 9, cyclization
to form a naphthalene ring was examined by the intramolecular
Friedel-Crafts reaction of 9 with AlCl3. However, the yield
of 12 from 8 was low (0-36%) after esterification with MeOH,
EDC‚HCl, and DMAP. Another route via an electrocyclic
reaction of the ketene intermediate proceeded smoothly.9,10
a Reagents and conditions: (a) Ph2CCl2,, 175 °C. (b) i-PrI, K2CO3,
acetone, 50 °C. (c) AcOH, H2O, reflux, 72% (three steps). (d) NBS,
THF, room temperature (rt). (e) MeI, K2CO3, acetone, 50 °C, 86% (two
steps). (f) NaOH, MeOH, H2O, 60 °C. (g) (COCl)2, PhCH3. (h) CH2N2,
Et3N, Et2O; then PhCO2Ag, Et3N, MeOH, 75% (three steps). (i)
CH2dCHCO2t-Bu, Pd(OAc)2, (p-tol)3P, Et3N, 100 °C, 90%. (j)
Ba(OH)2‚8H2O, t-BuOH. (k) (COCl)2, CH2Cl2. (l) i-Pr2NEt, PhCH3,
rt, 62% (three steps). (m) CF3CO2H, 99%.
(1) Lam, K. S.; Hesler, G. A.; Gustavson, D. R.; Crosswell, A. R.; Veitch,
J. M.; Forenza, S.; Tomita, K. J. Antibiot. 1991, 44, 472. Hofstead, S. J.;
Matson, J. A.; Malacko, A. R.; Marquardt, H. J. Antibiot. 1992, 45, 1250.
Constantine, K. L.; Colson, K. L.; Wittekind, M.; Friedrichs, M. S.; Zein,
N.; Tuttle, J.; Langley, D. R.; Leet, J. E.; Schroeder, D. R.; Lam, K. S.;
Farmer, B. T., II; Metzler, W. J.; Bruccoleri, R. E.; Mueller, L. Biochemistry
1994, 33, 11438.
(2) (a) Leet, J. E.; Schroeder, D. R.; Hofstead, S. J.; Golik, J.; Colson,
K. L.; Huang, S.; Klohr, S. E.; Doyle, T. W.; Matson, J. A. J. Am. Chem.
Soc. 1992, 114, 7946. (b) Leet, J. E.; Schroeder, D. R.; Langley, D. R.;
Colson, K. L.; Huang, S.; Klohr, S. E.; Lee, M. S.; Golik, J.; Hofstead, S.
J.; Doyle, T. W.; Matson, J. A. J. Am. Chem. Soc. 1993, 115, 8432; 1994,
116, 2233.
Treating the acid chloride 9 with i-Pr2NEt (1 equiv) in toluene
at room temperature gave tert-butyl naphthoate 10 in 62% yield,
which was readily converted to naphthoic acid 11.
(3) Zein, N.; Colson, K. L.; Leet, J. E.; Schroeder, D. R.; Solomon, W.;
Doyle, T. W.; Casazza, A. M. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 2822.
(4) Kawata, S.; Yoshimura, F.; Irie, J.; Ehara, H.; Hirama, M. SYNLETT
1997, 250. The three-dimensional structure of neocarzinostatin [Tanaka,
T.; Hirama, M.; Fujita, K.; Imajo, S.; Ishiguro, M. J. Chem. Soc., Chem.
Commun. 1993, 1205. Imajo, S.; Ishiguro, M.; Tanaka, T.; Hirama, M.;
Teplyakov, A. Bioorg. Med. Chem. 1995, 3, 429] and a computer modeling
study of the chromophore-apoprotein binding structure for C1027 and
kedarcidin (unpublished results) as well as the absolute stereochemistry of
C1027 [Iida, K.; Fukuda, S.; Tanaka, T.; Hirama, M.; Imajo, S.; Ishiguro,
M.; Yoshida, K.; Otani, T. Tetrahedron Lett. 1996, 37, 4997] suggested a
possibility that the assigned structure of the aglycone of 1 might be antipodal
to the natural form. We therefore planned to synthesize ent-1.
(5) For related synthetic studies, see: Iida, K.; Hirama, M. J. Am. Chem.
Soc. 1994, 116, 10310. Iida, K.; Hirama, M. J. Am. Chem. Soc. 1995, 117,
8875. Sato, I.; Akahori, Y.; Iida, K.; Hirama, M. Tetrahedron Lett. 1996,
37, 5135. Hirama, M. Recent Progress in the Chemical Synthesis of
Antibiotics and Related Microbial Products; Lukacs, G., Ed.; Springer-
Verlag: Berlin, 1993; pp 293. Lhermitte, H.; Grierson, D. S. Contemp.
Org. Synth. 1996, 3, 93. Magnus, P.; Carter, R.; Davies, M.; Elliott, J.;
Pitterna, T. Tetrahedron 1996, 52, 6283.
The chloroazatyrosine derivative11 16 was efficiently syn-
thesized from commercially available 2-chloro-3-hydroxypyri-
dine (13) (Scheme 2). The palladium-catalyzed cross-coupling
reaction of iodopyridine 14 and the alkylzinc compound 15
prepared from L-serine12,13 followed Burke’s procedure.14 The
TBS group was removed to form 16 using a weakly acidic
aqueous mixture of HF-NaF. Deprotection of the Boc group
of 16 and subsequent coupling with 11 gave R-chloroazatyrosyl
(9) The same finding and a very similar synthesis of 11 were recently
reported: Myers, A. G.; Horiguchi, Y. Tetrahedron Lett. 1997, 38, 4363.
(10) For related electrocyclic reactions, see: Choshi, T.; Yamada, S.;
Sugino, E.; Kuwada, T.; Hibino, S. J. Org. Chem. 1995, 60, 5899. Saito,
T.; Morimoto, M.; Akiyama, C.; Matsumoto, T.; Suzuki, K. J. Am. Chem.
Soc. 1995, 117, 10757.
(11) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung, D. W. J. Am. Chem.
Soc. 1997, 119, 656.
(6) Jurd, L. J. Am. Chem. Soc. 1959, 81, 4606.
(12) Electrolytic zinc prepared by hydrometallurgy should be used, see:
Takai, K.; Kakiuchi, T.; Utimoto, K. J. Org. Chem. 1994, 59, 2671.
(13) Jackson, R. F. W.; Wishart, N.; Wood, A.; James, K.; Wythes, M.
J. J. Org. Chem. 1992, 57, 3397.
(7) Chow, Y. L.; Zhao, D.-C.; Johansson, C. I. Can. J. Chem. 1988, 66,
2556.
(8) Heck, R. F. Org. React. 1982, 27, 345. de Meijere, A.; Meyer, F. E.
Angew. Chem., Int. Ed. Engl. 1994, 33, 2379.
(14) Ye, B.; Burke, Jr, T. R. J. Org. Chem. 1995, 60, 2640.
S0002-7863(97)03231-9 CCC: $14.00 © 1997 American Chemical Society