Organic Letters
Letter
M. J. Nature 2014, 510, 129. (c) Calleja, J.; Pla, D.; Gorman, T. W.;
Domingo, V.; Haffemayer, B.; Gaunt, M. J. Nat. Chem. 2015, 7, 1009.
(5) Example of remote C−H borylation of an unprotected amine: Li,
Q.; Liskey, C. W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 8755.
(6) For examples using carbamate protected amino acids and
peptides, see: (a) Detomaso, A.; Curci, R. Tetrahedron Lett. 2001, 42,
755. (b) Rella, M. R.; Williard, P. G. J. Org. Chem. 2007, 72, 525.
(c) Annese, C.; D’Accolti, L.; De Zotti, M.; Fusco, C.; Toniolo, C.;
Williard, P. G.; Curci, R. J. Org. Chem. 2010, 75, 4812.
known chemistry of persulfate oxidations. For example, see: House, D.
A. Chem. Rev. 1962, 62, 185.
(18) The modest yields of 6 and 7 were due to incomplete
conversion. Conducting the oxidation of 6 under more forcing
conditions (at 100 °C) resulted in the formation of side products. The
(19) Initial attempts to oxidize higher molecular weight amines under
our standard conditions were hampered by the modest solubility of
many of these substrates in water (even when protonated). Current
efforts are focusing on identifying suitable cosolvents and reoptimizing
the reaction for such systems.
(7) For examples using amide protecting groups, see: (a) McNeill, E.;
Du Bois, J. J. Am. Chem. Soc. 2010, 132, 10202. (b) Pierce, C. J.;
Hilinski, M. K. Org. Lett. 2014, 16, 6504.
(8) For examples using imide protecting groups, see: (a) Wu, H.;
Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Angew.
Chem., Int. Ed. 2015, 54, 4070. (b) Wang, D.; Shuler, W. G.; Pierce, C.
J.; Hilinski, M. K. Org. Lett. 2016, 18, 3826. (c) Zhang, X.; Yang, H.;
Tang, P. Org. Lett. 2015, 17, 5828. (d) Li, X.; Che, X.; Chen, G.-H.;
Zhang, J.; Yan, J.-L.; Zhang, Y.-F.; Zhang, L.-S.; Hsu, C.-P.; Gao, Y. Q.;
Shi, Z.-J. Org. Lett. 2016, 18, 1234.
(9) For an example using sulfonyl protecting groups, see: Adams, A.
M.; DuBois, J.; Malik, H. A. Org. Lett. 2015, 17, 6066.
(10) For representative examples of nitrogen-directed C−H
functionalization using protected amines as directing groups, see:
(a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005,
127, 13154. (b) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem.
Res. 2009, 42, 1074. (c) He, G.; Chen, G. Angew. Chem., Int. Ed. 2011,
́ ́
50, 5192. (d) Rodríguez, N.; Romero-Revilla, J. A.; Fernandez-Ibanez,
̃
́
M.A.; Carretero, J. C. Chem. Sci. 2013, 4, 175. (e) Fan, M.; Ma, D.
Angew. Chem., Int. Ed. 2013, 52, 12152. (f) Rouquet, G.; Chatani, N.
Angew. Chem., Int. Ed. 2013, 52, 11726. (g) Chan, K. S. L.; Wasa, M.;
Chu, L.; Laforteza, B. N.; Miura, M.; Yu, J.-Q. Nat. Chem. 2014, 6, 146.
(h) Han, J.; Zheng, Y.; Wang, C.; Zhu, Y.; Shi, D.-Q.; Zeng, R.; Huang,
Z.-B.; Zhao, Y. J. Org. Chem. 2015, 80, 9297. (i) Han, J.; Zheng, Y.;
Wang, C.; Zhu, Y.; Shi, D.-Q.; Zeng, R.; Huang, Z.-B.; Zhao, Y. J. Org.
Chem. 2015, 80, 9297. (j) Pasunooti, K. K.; Banerjee, B.; Yap, T.;
Jiang, Y.; Liu, C.-F. Org. Lett. 2015, 17, 6094. (k) Xu, Y.; Young, M. C.;
Wang, C.; Magness, D. M.; Dong, G. Angew. Chem., Int. Ed. 2016, 55,
9084. (l) Huang, Z.; Wang, C.; Dong, G. Angew. Chem., Int. Ed. 2016,
55, 5299. (m) Han, J.; Zheng, Y.; Wang, C.; Zhu, Y.; Huang, Z.-B.; Shi,
D.-Q.; Zeng, R.; Zhao, Y. J. Org. Chem. 2016, 81, 5681. (n) He, J.;
Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2016, ASAP,
(11) (a) Asensio, G.; Gonzalez-Nunez, M. E.; Bernardini, C. B.;
́
́
̃
Mello, R.; Adam, W. J. Am. Chem. Soc. 1993, 115, 7250. (b) Lee, M.;
Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 12796.
(12) Isaacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman
Group Limited: London, 1995; pp 146−192.
(13) Salamone, M.; Carboni, G.; Bietti, M. J. Org. Chem. 2016, 81,
9269.
(14) Methyl(trifluoro-methyl)dioxirane. e-EROS Encyclopedia of
Reagents for Organic Synthesis [Online]; John Wiley & Sons, Posted
(15) A control reaction (Table 1, entry 6) confirmed that 2 is not
formed in appreciable quantities in the absence of acid; instead, mostly
starting material was recovered. Notably, 1.1 equiv of H2SO4 was
added at the end of this reaction to ensure solubility of starting
material and products during the NMR analysis of the crude reaction
mixture.
(16) Cat. no. 216224 ($41.09/mol) from Sigma Aldrich Online
Catalogue (accessed Dec 4, 2016).
(17) Under the optimized conditions for the oxidation of substrate 1,
the addition of TEMPO or 1,4-dinitrobenzene led to significantly
diminished conversion of 1 and yield of 2. For example, with 1 equiv
of TEMPO, the yield of 2 was just 13%, along with 74% of substrate 1
remaining. With 20 mol % of 1,4-dinitrobenzene, the yield of 2 was
44%, along with 49% of substrate 1 remaining. These preliminary
results point to a radical pathway, which is fully consistent with the
D
Org. Lett. XXXX, XXX, XXX−XXX