Hz), 6.98 (d, 2 H, J 8 Hz), 2.50 (qnt, 1 H), 2.27 (s, 3 H), 1.2 (m, 18 H); 13
C
NMR (CDCl3) d 157.92 (py), 155.5 (py), 135.14 (toluene), 131.5 (toluene),
128.6 (toluene), 124.8 (toluene), 124.5 (py), 118.2 (C·C), 100.0 (C·C), 45.7
(nonyl), 35.6 (nonyl), 29.5 (nonyl, 22.6 (nonyl), 21.3 (nonyl), 13.9 (nonyl).
2c: IR n(C·C)/cm21 (CH2Cl2) 2098; m/z 898.5 (M+); 1H NMR (CDCl3) d
9.16 (d, 2 H, J 6.75 Hz), 7.36 (d, 2 H, J 5. Hz), 7.11 (d, 2 H, J 7 Hz), 3.05
(d, 2 H, J 5.Hz), 2.56 (qnt, 1 H), 1.25 (m, 18 H); 13C NMR (CDCl3) d 158.9
(py), 154.9 (py), 145.0 (arene), 132.0 (arene), 127.9 (arene), 124.9 (py),
123.4 (arene), 100.12 (C·C), 82.3 (C·C), 45.76 (nonyl), 35.6 (nonyl), 22.6
(nonyl), 13.9 (nonyl). 3: IR n(C·C)/cm21 (CH2Cl2) 2097; 1H NMR
(CDCl3) d 9.29 (d, 2 H, J 6.98 Hz), 7.01 (s, 2 H), 6.98 (d, 2 H, J 6.8 Hz),
2.49 (qnt, 1 H), 2.16 (s, 6 H), 1.10 (m, 18 H); 13C NMR (CDCl3) d 157.6
(py), 155.43 (py), 135.97 (arene), 132.3 (arene), 124.51 (py), 124.3 (arene),
45.65 (nonyl), 35.64 (nonyl), 29.5 (nonyl), 22.61 (nonyl), 20.4 (arene),
13.88 (nonyl). Satisfactory microanalyses were obtained on all the
complexes.
‡ Crystal data for 2c: C44H54N4O4Pt, Mr = 898.00, monoclinic, space
group P21/c, a = 7.693(2), b = 22.908(5), c = 11.738(2) Å, b = 94.35(3)°,
U = 2062.6(8) Å3, Z = 2, Dc = 1.446 g cm23, m = 3.447 mm21 for Mo-
Ka radiation (l = 0.71073 Å), F(000) = 912, T = 153(2) K. 3471
Refelctions measured on a Rigaku AFC7R diffractometer, 2696 unique
absorption corrected (Rint = 0.082) used for structure solution (Patterson)
and refinement (full-matrix least squares on F2, anisotropic displacement
parameters for non-H atoms, riding isotropic H-atoms); R1 = 0.053 for
1670 reflections with I > 2s(I) and wR2 = 0.172 for all data, goodness of
fit = 1.079 for all F2 values, 243 parameters; final difference map showed
only ripples in the vicinity of the Pt atom. Programs: TeXsan, SHELXTL-
PLUS and SHELXL 93. CCDC 182/614.
C(8)
C(7)
C(10)
C(6)
C(12)
C(9)
C(11)
C(13)
C(14)
C(3)
C(2)
C(1)
C(4)
C(5)
O(1)
N(2)
C(25)
N(1)
C(24)
C(23)
C(26)
C(22)
C(28a)
C(22a)
C(27)
O(2a)
O(2)
C(27a)
N(2a)
C(21)
Pt
N(1a)
C(21a)
C(28)
C(26a)
C(23a)
C(25a)
C(24a)
O(1a)
C(5a)
C(4a)
C(1a)
C(2a)
C(3a)
C(11a)
C(12a)
C(14a)
C(9a)
C(6a)
C(10a)
C(13a)
C(8a)
C(7a)
Fig. 1 Molecular structure of 2c showing the atom numbering scheme.
Selected bond lengths (Å) and angles (°): Pt–N(1) 2.001(10), Pt–C(21)
2.02(2), C(21)–C(22) 1.21(2), C(22)–C(23) 1.42(2), C(26)–N(2) 1.49(2),
N(2)–O(1) 1.22(2), N(2)–O(2) 1.22(2); N(1)–Pt–C(21) 88.2(4), N(1)–Pt–
C(21A) 91.8(4), Pt–C(21)–C(22) 174.8(11), C(21)–C(22)–C(23) 174(2),
O(1)–N(2)–C(26) 118.2(13), O(2)–N(2)–C(26) 116.1(14), O(1)–N(2)–O(2)
125.6(14).
1 N. J. Long, Angew. Chem., Int. Ed. Engl., 1995, 34, 21; I. Manners,
Angew. Chem., Int. Ed. Engl., 1996, 35, 1602; A. Harriman and
R. Ziessel, Chem. Commun., 1996, 1707.
the IR spectrum. As in other s-alkynyl polymers9 this n(C·C)
stretch does not show a significant shift from the position in the
precursor complex. The 13C NMR spectrum confirmed the
presence of both the arene spacer group and the substituted
pyridine ligands, but in common with other ‘rigid-rod’
polymers chemical shifts corresponding to the s-alkynyl
carbons were not observed.2,3
2 S. J. Davies, B. F. G. Johnson, M. S. Khan and J. Lewis, J. Chem. Soc.,
Chem. Commun., 1991, 187; B. F. G. Johnson, A. K. Kakkar,
M. S. Khan and J. Lewis, J. Organomet. Chem., 1991, 409, C12;
Z. Atherton, C. W. Faulkner, S. L. Ingham, A. K. Kakkar, M. S. Khan,
J. Lewis, N. J. Long and P. R. Raithby, J. Organomet. Chem., 1993, 462,
265; M. S. Khan, A. K. Kakkar, S. L. Ingham, P. R. Raithby, J. Lewis,
B. Spencer, F. Wittman and R. H. Friend, J. Organomet. Chem., 1994,
472, 247.
3 J. Lewis, M. S. Khan, A. K. Kakkar, B. F. G. Johnson, T. B. Marder,
H. B. Fyfe, F. Wittmann and R. H. Friend, J. Organomet. Chem., 1992,
425, 165; M. S. Khan, A. K. Kakkar, N. J. Long, J. Lewis, P. R. Raithby,
P. Nguyen, T. B. Marder, F. Wittmann and R. H. Friend, J. Mater.
Chem., 1994, 4, 1227; A. E. Dray, F. Wittmann, R. H. Friend,
A. M. Donald, M. S. Khan, J. Lewis and B. F. G. Johnson, Synth. Met.,
1991, 41–43, 871; C. W. Faulkner, S. L. Ingham, M. S. Khan, J. Lewis,
N. J. Long and P. R. Raithby, J. Organomet. Chem., 1994, 482, 139;
A. Ko¨hler, H. F. Wittmann, R. H. Friend, M. S. Khan and J. Lewis,
Synth. Met., 1994, 67, 245; D. Beljonne, F. H. Wittmann, A. Ko¨hler,
S. Graham, M. Younus, J. Lewis, P. R. Raithby, M. S. Khan,
R. H. Friend and J. L. Bre´das, J. Chem. Phys., 1996, 105, 3868;
D. Beljonne, M. C. B. Colbert, P. R. Raithby, R. H. Friend and
J. L. Bre´das, Synth. Met., 1996, 81, 179.
Unlike many of the phosphine-stabilised ‘rigid-rod’ poly-
mers 3 is soluble in a range of organic solvents. Therefore, it has
been possible to run a series of electronic spectra to observe the
shift in the absorption consistent with the greater delocalisation
of electron density through the extended p-system along the
polymer chain. In the free ligand, HC·CC6H2Me2C·CH, two
strong absorptions are observed at lmax = 263.8 nm (e = 1.9 3
104 dm3 mol21 cm21) and lmax = 273.3 (2.31 3 104) in the UV
region.
For
the
precursor
complex
trans-
[Pt(NC5H4CHBun ) Cl2] 1 one broad absorption is observed at
2 2
lmax = 252.5 nm (e = 9.39 3 103 dm3 mol21 cm21), while in
2 2
the alkynyl-substituted monomer [Pt(NC5H4CHBun ) -
(C·CPh)2] 2a the absorption is slightly shifted to lmax = 281.0
nm (e = 3.53 3 104 dm3 mol21 cm21). In contrast, for the
polymer there is a considerable shift in absorption to
lmax = 342.2 nm (e = 2.92 3 104 dm3 mol21 cm21), again a
very broad band being observed. This shift in the position of the
absorption is consistent with the greater delocalisation along the
polymer chain. Similar shifts in the absorption spectra have
been observed previously for related systems.10
4 R. Nast, Coord. Chem. Rev., 1982, 47, 89; J. Manna, K. D. John and
M. D. Hopkins, Adv. Organomet. Chem., 1995, 38, 79.
5 D. Collison, F. E. Mabbs, E. J. L. McInnes, K. J. Taylor, A. J. Welch and
L. J. Yellowlees, J. Chem. Soc., Dalton Trans., 1996, 329;
E. J. L. McInnes, A. J. Welch and L. J. Yellowlees, Chem. Commun.,
1996, 2393.
6 S. L. James, J. Lewis, P. R. Raithby and M. Younus, J. Organomet.
Chem., in the press.
We thank the EPSRC for support (to C. J. A. and S. L. J.), and
Dr J. E. Davies for assistance with X-ray data collection.
7 P.-C. Kong and F. D. Rochon, Can. J. Chem., 1978, 56, 441.
8 R. A. Mariezcurrena and S. E. Rasmussen, Acta Chem. Scand., 1973, 27,
2678; A. Sebald, C. Strader and B. Wrackmeyer, J. Organomet. Chem.,
1986, 311, 233; J. P. Carpenter and C. M. Lukehart, Inorg. Chim. Acta.,
1991, 190, 7; L. Manojlovic-Muir, A. N. Henderson, I. Treurnicht and
R. J. Puddephatt, Organometallics, 1989, 8, 2055.
9 A. J. Hodge, S. L. Ingham, A. K. Kakkar, M. S. Khan, J. Lewis,
N. J. Long, D. G. Parker and P. R. Raithby, J. Organomet. Chem., 1995,
488, 205.
Footnotes and References
* E-mail: prr1@cam.ac.uk
† 2a: IR n(C·C)/cm21 (CH2Cl2) 2102; m/z 807.8 (M+); 1H NMR (CDCl3)
d 9.31 (d, 2 H, J 6.73 Hz), 7.23 (m, 5 H), 7.03 (d, 2 H, J 6.79 Hz), 2.50 (qnt,
1 H), 1.2 (m, 18 H); 13C NMR (CDCl3) d 158.05 (py), 155.44 (py), 131.67
(arene), 127.8 (arene), 125.46 (arene), 124.6 (py), 119.2 (C·C), 100.13
(C·C), 45.73 (nonyl), 35.64 (nonyl), 29.59 (nonyl), 22.67 (nonyl), 13.9
(nonyl). 2b: IR n(C·C)/cm21 (CH2Cl2) 2102; m/z 835.7 (M+); 1H NMR
(CDCl3) d 9.32 (d, 2 H, J 6.72 Hz), 7.22 (d, 2 H, J 8 Hz), 7.01 (d, 2 H, J 6.8
10 W. Blau, H. J. Byrne, D. J. Cardin and A. P. Davey, J. Mater. Chem.,
1991, 1 245.
Received in Basel, Switzerland, 9th September 1997; 7/06586H
2156
Chem. Commun., 1997