ACS Catalysis
Page 4 of 5
(6) Reviews, see: (a) Sakakura, T.; Kohno, K. Chem. Commun. 2009,
1312ꢀ1330. (b) North, M.; Pasquale, R.; Young, C. Green Chem.
2010, 12, 1514ꢀ1539. (c) Cheng, W.; Su, Q.; Wang, J.; Sun, J.; Ng, F.
T. T. Catalysts 2013, 3, 878ꢀ901. (d) He, Q.; O’Brien, J. W.; Kitselꢀ
man, K. A.; Tompkins, L. E.; Curtis, G. C. T.; Kerton, F. M. Catal.
Sci. Technol. 2014, 4, 1513ꢀ1528. (e) Fiorani, G.; Guo, W.; Kleij, A.
W. Green Chem. 2015, 17, 1375ꢀ1389. (f) Cokoja, M.; Wilhelm, M.
E.; Anthofer, M. H.; Herrmann, W. A.; Kühn, F. E. ChemSusChem
2015, 8, 2436ꢀ2454.
(7) Reviews, see: (a) Decortes, A.; Castilla, A. M.; Kleij, A. W. An-
gew. Chem. Int. Ed. 2010, 49, 9822ꢀ9837. (b) Lu, X.ꢀB.; Darensbourg,
D. J. Chem. Soc. Rev. 2012, 41, 1462ꢀ1484. (c) Martín, C.; Fiorani,
G.; Kleij, A. W. ACS Catal. 2015, 5, 1353ꢀ1370.
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was partially supported by the Japan Society for the
Promotion of Science (JSPS) through a GrantꢀinꢀAid for Research
Activity Startꢀup (Grant No. JP15H06242). We gratefully
acknowledge Dr. Kenji Yoza (Bruker AXS) for Xꢀray analysis.
9
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) Wittig reactions: (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev.
1989, 89, 863ꢀ927. (b) Cristau, H.ꢀJ. Chem. Rev. 1994, 94, 1299ꢀ1313.
(c) Hoffmann, R. W. Angew. Chem. Int. Ed. 2001, 40, 1411ꢀ1416. (d)
Rein, T.; Pedersen, T. M. Synthesis 2002, 579ꢀ594. Phase transfer
catalysts: (e) Manabe, K. Tetrahedron Lett. 1998, 39, 5807ꢀ5810. (f)
Manabe, K. Tetrahedron 1998, 54, 14465ꢀ14476. Ionic liquids: (g)
Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772ꢀ
3789. (h) Tzschucke, C. C.; Markert, C.; Bannwarth, W.; Roller, S.;
Hebel, A.; Haag, R. Angew. Chem. Int. Ed. 2002, 41, 3964ꢀ4000. (i)
Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102,
3667ꢀ3692. Other applications: (j) Beck, P. In Organic Phosphorus
Compounds; Kosolapoff, G. M., Maier, L., Eds.; WileyꢀInterscience:
New York, 1972; Vol. 2, pp 189ꢀ508, and references cited therein. (k)
Castro, B. R. Org. React. 1983, 29, 1ꢀ162. (l) Akutsu, H.; Yamada, J.;
Nakatsuji, S. Chem. Lett. 2001, 30, 208ꢀ209. (m) Akutsu, H.; Yamada,
J.; Nakatsuji, S. Chem. Lett. 2003, 32, 1118ꢀ1119. (n) Kim, Y.; Gabꢀ
baï, F. J Am. Chem. Soc. 2009, 131, 3363ꢀ3369. (o) Moritz, R.; Wagꢀ
ner, M.; Schollmeyer, D.; Baumgarten, M.; Müllen, K. Chem. Eur. J.
2015, 21, 9119ꢀ9125. (p) Deng, Z.; Lin, J.ꢀH.; Xiao, J.ꢀC. Nat. Com-
mun. 2016, 7, 10337. See also: (q) Werner, T. Adv. Synth. Catal. 2009,
351, 1469ꢀ1481.
(8) Selected recent examples, see: (a) Tian, D.ꢀW.; Liu, B.ꢀY.; Gan,
Q.ꢀY.; Li, H.ꢀR.; Darensbourg, D. J. ACS Catal. 2012, 2, 2029ꢀ2035.
(b) Beattie, C.; North, M.; Villuendas, P.; Young, C. J. Org. Chem.
2013, 78, 419ꢀ426. (c) Whiteoak, C. J.; Kielland, N.; Laserna, V.;
EscuderoꢀAdán, E. C.; Martin, E.; Kleij, A. W. J. Am. Chem. Soc.
2013, 135, 1228ꢀ1231. (d) Whiteoak, C.; Kielland, N.; Laserna, V.;
CastroꢀGómez, F.; Martin, E.; EscuderoꢀAdán, E. C.; Bo, C.; Kleij, A.
W. Chem. Eur. J. 2014, 20, 2264ꢀ2275. (e) Kim, S. H.; Ahn, D.; Go,
M.ꢀJ.; Park, M. H.; Kim, M.; Lee, J.; Kim, Y. Organometallics 2014,
33, 2770ꢀ2775. (f) Ren, W.ꢀM.; Liu, Y.; Lu, X.ꢀB. J. Org. Chem.
2014, 79, 9771ꢀ9777. (g) Ema, T.; Miyazaki, Y.; Shimonishi, J.;
Maeda, C.; Hasegawa, J. J. Am. Chem. Soc. 2014, 136, 15270ꢀ15279.
(h) Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T. Angew. Chem. Int.
Ed. 2015, 54, 134ꢀ138. (i) CastroꢀOsma, J. A.; Lamb, K. J.; North, M.
ACS Catal. 2016, 6, 5012ꢀ5025.
(9) Selected examples, see: (a) Barbarini, A.; Maggi, R.; Mazzacani,
A.; Mori, G.; Sartori, G.; Sartorio, R. Tetrahedron Lett. 2003, 44,
2931ꢀ2934. (b) Zhou, H.; Zhang, W.ꢀZ.; Liu, C.ꢀH.; Qu, J.ꢀP.; Lu, X.ꢀ
B. J. Org. Chem. 2008, 73, 8039ꢀ8044. (c) Tsutsumi, Y.; Yamakawa,
K.; Yoshida, M.; Ema, T.; Sakai, T. Org. Lett. 2010, 12, 5728ꢀ5731.
(d) Liang, S.; Liu, H.; Jiang, T.; Song, J.; Yang, G.; Han, B. Chem.
Commun. 2011, 47, 2131ꢀ2133. (e) Chatelet, B.; Joucla, L.; Dutasta,
J.ꢀP.; Martinez, A.; Szeto, K. C.; Dufaud, V. J. Am. Chem. Soc. 2013,
135, 5348ꢀ5351. (f) Zhou, H.; Wang, G.ꢀX.; Zhang, W.ꢀZ.; Lu, X.ꢀB.
ACS Catal. 2015, 5, 6773ꢀ6779. See also references 3 and 4.
(10) (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem.
Rev. 2007, 107, 5471ꢀ5569. (b) Alemán, J.; Parra, A.; Jiang, H.;
Jørgensen, K. A. Chem. Eur. J. 2011, 17, 6890ꢀ6899. (c) Siau, W.ꢀY.;
Wang, J. Catal. Sci. Technol. 2011, 1, 1298ꢀ1310. (d) Lu, L.ꢀQ.; An,
X.ꢀL.; Chen, J.ꢀR.; Xiao, W.ꢀJ. Synlett 2012, 490ꢀ508. For the syntheꢀ
sis of optically active 6ꢀmembered cyclic carbonates by a chiral
Brønsted acid/base bifunctional catalyst, see: (e) Vara, B. A.; Struble,
T. J.; Wang, W.; Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc.
2015, 137, 7302ꢀ7305.
(11) For ammonium salts, see: (a) Caló, V.; Nacci, A.; Monopoli, A.;
Fanizzi, A. Org. Lett. 2002, 4, 2561ꢀ2563. (b) Aoyagi, N.; Furusho,
Y.; Endo, Y. Chem. Lett. 2012, 41, 240ꢀ241. (c) Aoyagi, N.; Furusho,
Y.; Endo, T. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1230ꢀ
1242. For phosphonium salts, see: (d) Nishikubo, T.; Kameyama, A.;
Yamashita, J.; Tomoi, M.; Fukuda, W. J. Polym. Sci. Part A: Polym.
Chem. 1993, 31, 939ꢀ947. (e) Nishikubo, T.; Kameyama, A.; Yamaꢀ
shita, J.; Fukumitsu, T.; Maejima, C.; Tomoi, M. J. Polym. Sci. Part
A: Polym. Chem. 1995, 33, 1011ꢀ1017. (f) He, L.ꢀN.; Yasuda, H.;
Sakakura, T. Green Chem. 2003, 5, 92ꢀ94. (g) Takahashi, T.; Watahiꢀ
ki, T.; Kitazume, S.; Yasuda, H.; Sakakura, T. Chem. Commun. 2006,
1664ꢀ1666. (h) Shim, J. J.; Kim, D.; Ra, C. S. Bull. Korean Chem.
Soc. 2006, 27, 744ꢀ746. (i) Sun, J.; Ren, J.; Zhang, S.; Cheng, W.
Tetrahedron Lett. 2009, 50, 423ꢀ426. (j) Aoyagi, N.; Furusho, Y.;
Endo, T. Tetrahedron Lett. 2013, 54, 7031ꢀ7034.
(2) (a) Marcoux, D.; Charette, A. B. J. Org. Chem. 2008, 73, 590ꢀ
593. (b) Marcoux, D.; Charette, A. B. Adv. Synth. Catal. 2008, 350,
2967ꢀ2974, and references cited therein.
(3) Selected examples, see: (a) Shen, Y.ꢀM.; Duan, W.ꢀL.; Shi, M.
Adv. Synth. Catal. 2003, 345, 337ꢀ340. (b) Huang, J.ꢀW.; Shi, M. J.
Org. Chem. 2003, 68, 6705ꢀ6709. (c) Shen, Y.ꢀM.; Duan, W.ꢀL.; Shi,
M. Eur. J. Org. Chem. 2004, 3080ꢀ3089. (d) Sun, J.; Han, L.; Cheng,
W.; Wang, J.; Zhang, X.; Zhang, S. ChemSusChem 2011, 4, 502ꢀ507.
(e) Whiteoak, C. J.; Nova, A.; Maseras, F.; Kleij, A. W. ChemSus-
Chem 2012, 5, 2032ꢀ2038. (f) HardmanꢀBaldwin, A. M.; Mattson, A.
E. ChemSusChem 2014, 7, 3275ꢀ3278. (g) Gennen, S.; Alves, M.;
Méreau, R.; Tassaing, T.; Gilbert, B.; Detrembleur, C.; Jerome, C.;
Grignard, B. ChemSusChem 2015, 8, 1845ꢀ1849. (h) Alves, M.; Griꢀ
gnard, B.; Gennen, S.; Mereau, R.; Detrembleur, C.; Jerome, C.; Tasꢀ
saing, T. Catal. Sci. Technol. 2015, 5, 4636ꢀ4643. (i) Liu, X.ꢀF.; Song,
Q.ꢀW.; Zhang, S.; He, L.ꢀN. Catal. Today 2016, 263, 69ꢀ74. (j) Wang,
L.; Zhang, Z.; Kodama, K.; Hirose, T. Green Chem. 2016, 18, 1229ꢀ
1233. (k) Wang, J.; Zhang, Y. ACS Catal. 2016, 6, 4871ꢀ4876.
(4) Selected examples, see: (a) Zhu, A.; Jiang, T.; Han, B.; Zhang, J.;
Xie, Y.; Ma, X. Green Chem. 2007, 9, 169ꢀ172. (b) Zhou, Y.; Hu, S.;
Ma, X.; Liang, S.; Jiang, T.; Han, B. J. Mol. Catal. A: Chem. 2008,
284, 52ꢀ57. (c) Werner, T.; Büttner, H. ChemSusChem 2014, 7, 3268ꢀ
3271. (d) Büttner, H.; Steinbauer, J.; Werner, T. ChemSusChem 2015,
8, 2031ꢀ2034. (e) Büttner, H.; Lau, K.; Spannenberg, A.; Werner, T.
ChemCatChem 2015, 7, 459ꢀ467. (f) Liu, S.; Suematsu, N.; Maruoka,
K.; Shirakawa, S. Green Chem. 2016, 18, 4611ꢀ4615. See also: (g)
WeiꢀLi, D.; Bi, J.; ShengꢀLiana, L.; XuꢀBiao, L.; XinꢀMana, T.;
ChakꢀTong, A. Appl. Catal. A: Gen. 2014, 470, 183ꢀ188. (h) Cheng,
W.; Xiao, B.; Sun, J.; Dong, K.; Zhang, P.; Zhang, S.; Ng, F. T. T.
Tetrahedron Lett. 2015, 56, 1416ꢀ1419.
(12) No conversion of 2a was observed in the absence of TAPS 1a
under the same reaction conditions. Detailed optimization of reaction
conditions is shown in Supporting Information.
(13) Shaikh, A. A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951ꢀ976.
(14) 2h was quantitatively converted to 3h under the same condiꢀ
tions in Scheme 3b.
(15) If the phenolic oxygen of TAPS 1 attacks not halohydrins but
epoxides, the formation of 9 from 2 would not be reversible. This was
supported by the experiments in Scheme 3a and 3b.
(5) Reviews, see: (a) Sakakura, T.; Choi, J.ꢀC.; Yasuda, H. Chem.
Rev. 2007, 107, 2365ꢀ2387. (b) Cokoja, M.; Bruckmeier, C.; Rieger,
B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem. Int. Ed. 2011, 50,
8510ꢀ8537. (c) Peters, M.; Köhler, B.; Kuckshinrichs, W.; Leitner,
W.; Markewitz, P.; Müller, T. E. ChemSusChem 2011, 4, 1216ꢀ1240.
(d) Lu, X.ꢀB.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462ꢀ
1484. (e) Omae, I. Coord. Chem. Rev. 2012, 256, 1384ꢀ1405.
ACS Paragon Plus Environment