Page 5 of 6
Journal of the American Chemical Society
(3) (a) Kende, A. S.; Roth, B.; Sanfilippo, S. J. Facile, Palladium(II)-
Dehydrogenation of Cyclohexanone to Cyclohexenone Catalyzed
by Pd(DMSO)2(TFA)2: Evidence for Ligand-Controlled
Chemoselectivity. J. Am. Chem. Soc. 2013, 135, 8205–8212.
(13) Chen, M.; Dong, G. Direct Catalytic Desaturation of Lactams
Enabled by Soft Enolization. J. Am. Chem. Soc. 2017, 139, 7757–
7760.
(14) Chen, M.; Rago, A.; Dong, G. Platinum-catalyzed Desaturation of
Lactams, Ketones and Lactones. Angew. Chem. Int. Ed. 2018, 57,
16205–16209.
Mediated Synthesis of Bridged and Spirocyclic Bicycloalkenones.
J. Am. Chem. Soc. 1982, 104, 1784–1785. (b) Kende, A. S.; Roth,
B.; Sanfilippo, P. J.; Blacklock, T. J. Mechanism and
1
2
3
4
5
6
7
8
Regioisomeric
Control
in
Palladium(II)-Mediated
Cycloalkenylations. A Novel Total Synthesis of (±)-Quadrone. J.
Am. Chem. Soc. 1982, 104, 5808–5810.
(4) (a) For a review on palladium-mediated cycloalkenylations, see:
LeBras, J.; Muzart, J. Base-free palladium-mediated
cycloalkenylations of olefinic enolic systems. Tetrahedron 2015,
71, 9035–9059. (b) Toyota, M.; Ihara, M. Development of
Palladium-Catalyzed Cycloalkenylation and its Application to
Natural Product Synthesis. Synlett 2002, 1211–1222.
(5) Dénès, F.; Pérez-Luna, A.; Chemla, F. Addition of Metal Enolate
Derivatives to Unactivated Carbon-Carbon Multiple Bonds. Chem.
Rev. 2010, 110, 2366–2447.
(15) (a) Ueno, S.; Shimizu, R.; Kuwano, R. Nickel-Catalyzed
Formation of a Carbon-Nitrogen Bond at the -Position of
Saturated Ketones. Angew. Chem. Int. Ed. 2009, 48, 4543–4545.
(b) Tutkowski, B. M.; Grigalunas, M.; Wiest, O.; Helquist, P. A
nickel-catalyzed ,-coupling of saturated ketones. Tetrahedron
Lett. 2015, 56, 3468–3472. (c) Jie, X.; Shang, Y.; Zhang, X.; Su,
W. Cu-Catalyzed Sequential Dehydrogenation–Conjugate
Addition for -Functionalization of Saturated Ketones: Scope and
Mechanism. J. Am. Chem. Soc. 2016, 138, 5623–5633. (d) Shang,
Y.; Jie, X.; Jonnada, K.; Zafar, S. N.; Su, W. Dehydrogenative
desaturation-relay via formation of multicenter-stabilized radical
intermediates. Nat. Commun. 2017, 8, 2273. (e) Li, H.; Jiang, Q.;
Jie, X.; Shang, Y.; Zhang, Y.; Goossen, L. J.; Su, W. Rh/Cu-
Catalyzed Ketone -Functionalization by Merging Ketone
Dehydrogenation and Carboxyl-Directed C-H Alkylation. ACS
Catal. 2018, 8, 4777–4782.
(16) Lee, K. L.; Ambler, C. M.; Anderson, D. R.; Boscoe, B. P.; Bree,
A. G.; Brodfuehrer, J. I.; Chang, J. S.; Choi, C.; Chung, S.; Curran,
K. J.; Day, J. E.; Dehnhardt, C. M.; Dower, K.; Drozda, S. E.;
Frisbie, R. K.; Gavrin, L. K.; Goldberg, J. A.; Han, S.; Hegen, M.;
Hepworth, D.; Hope, H. R.; Kamtekar, S.; Kilty, I. C.; Lee, A.; Lin,
L.-L.; Lovering, F. E.; Lowe, M. D.; Mathias, J. P.; Morgan, H. M.;
Murphy, E. A.; Papaioannou, N.; Patny, J. P.; Pierce, B. S; Rao, V.
R.; Saiah, E.; Samardjiev, I. J.; Samas, B. M.; Shen, M. W. H.;
Shin, J. H.; Soutter, H. H.; Strohbach, J. W.; Symanowicz, P. T.;
Thomason, J. R.; Trzupek, J. D.; Vargas, R.; Vincent, F.; Yan, J.;
Zapf, C. W.; Wright, S. W.Discovery of Clinical Candidate 1-
{[2S,3S,4S)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) Pei, T.; Wang, X.; Widenhoefer, R. A. Palladium-Catalyzed
Intramolecular Oxidative Alkylation of Unactivated Olefins. J.
Am. Chem. Soc. 2003, 125, 648–649.
(7) (a) Chen, Y.; Romaire, J. P.; Newhouse, T. R. Palladium-Catalyzed
,-Dehydrogenation of Esters and Nitriles. J. Am. Chem. Soc.
2015, 137, 5875–5878. (b) Chen, Y.; Turlik, A.; Newhouse, T. R.
Amide ,-Dehydrogenation Using Allyl-Palladium Catalysis and
a Hindered Monodentate Anilide. J. Am. Chem. Soc. 2016, 138,
1166–1169. (c) Zhao, Y.; Chen, Y.; Newhouse, T. R. Allyl-
Palladium Catalyzed ,-Dehydrogenation of Carboxylic Acids
via Enediolates. Angew. Chem. Int. Ed. 2017, 56, 13122–13125.
(d) Schuppe, A. W.; Huang, D.; Chen, Y.; Newhouse, T. R. Total
Synthesis of (–)-Xylogranatopyridine B via a Palladium-Catalyzed
Oxidative Stannylation of Enones. J. Am. Chem. Soc. 2018, 140,
2062–2066. (e) Szewczyk, S. M.; Zhao, Y.; Sakai, H. A.; Dube, P.;
Newhouse, T. R. ,-Dehydrogenation of esters with free O-H and
N-H functionalities with allyl-palladium catalysis. Tetrahedron
2018, 74, 3293–3300.
(8) For allyl-palladium-catalyzed dehydrogenation of ketones, see: (a)
Chen, Y.; Huang, D.; Zhao, Y.; Newhouse, T. R. Allyl-Palladium-
Catalyzed Ketone Dehydrogenation Enables Telescoping with
Enone ,-Vicinal Difunctionalization. Angew. Chem. Int. Ed.
2017, 56, 8258–8262. (b) Huang, D.; Zhao, Y. Newhouse, T. R.
Synthesis of Cyclic Enones by Allyl-Palladium-Catalyzed ,-
Dehydrogenation. Org. Lett. 2018, 20, 684–687.
methoxyisoquinoline-6-carboxamide (PF-06650833),
a Potent,
Selective Inhibitor of Interleukin-1 Receptor Associated Kinase 4
(IRAK4), by Fragment-Based Drug Design. J. Med. Chem. 2017,
60, 5521–5542.
(17) (a) Achonduh, G. T.; Hadei, N.; Valente, C.; Avola, S.; O’Brien,
C. J.; Organ, M. G. On the role of additives in alkyl–alkyl Negishi
cross-couplings. Chem. Commun. 2010, 46, 4109–4111. (b)
McCann, L. M.; Organ, M. C. On the Remarkably Different Role
of Salt in the Cross-Coupling of Arylzincs From That Seen with
Alkylzincs. Angew. Chem. Int. Ed. 2014, 53, 4386–4389.
(18) (a) Chen, K.; Ishihara, Y.; Galán, M. M.; Baran, P. S. Total
synthesis of eudesmane terpenes: cyclase phase. Tetrahedron
2010, 66, 4738–4744. (b) Thomas, A. F.; Ozainne, M.; Decorzant,
R.; Naf, F.; Lukacs, G. 10-Epijuneol, a new cis-eudesmane
sesquiterpenoid. Tetrahedron 1976, 32, 2261–2264. (c) Toyota,
M.; Asakawa, Y. An eudesmane-type sesquiterpene alcohol from
the liverwort Frulllania tamarisci. Phytochemistry 1990, 29,
3664–3665.
(19) (a) Presset, M.; Coquerel, Y.; Rodriguez, J. Syntheses and
Applications of Functionalized Bicyclo[3.2.1]octanes: Thirteen
Years of Progress. Chem. Rev. 2013, 113, 525–595. (b) Ruiz, M.;
López-Alvarado, P.; Giorgi, G.; Menéndez, J. C. Domino reactions
for the synthesis of bridged bicyclic frameworks: fast access to
bicyclo[n.3.1]alkanes. Chem. Soc. Rev. 2011, 40, 3445–3454.
(20) (a) Stadtmüller, H.; Lentz, R.; Tucker, C. E.; Stüdemann, T.;
Dörner, W.; Knochel, P. Palladium-Catalyzed Iodine-Zinc
Exchange Reactions. A New Palladium-Mediated Intramolecular
Carbozincation of Alkenes. J. Am. Chem. Soc. 1993, 115, 7027–
7028. (b) Meyer, C.; Marek, I.; Courtemanche, G.; Normant, J.-F.
Carbocyclization of Functionalized Zinc Organometallics. Synlett
1993, 266–268.
(9) (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent advances
in homogeneous nickel catalysis. Nature 2014, 509, 299–309. (b)
Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Methods Utilizing First-
Row Transition Metals in Natural Product Total Synthesis. Chem.
Rev. 2017, 117, 11680–11752.
(10) Nokami, J.; Watanabe, H.; Mandai, T.; Kawada, M.; Tsuji, J. The
palladium-catalyzed Michael addition reaction of the ketone
enolates generated by the decarboxylation of allyl--keto
carboxylates under neutral conditions. Tetrahedron Lett. 1989, 30,
4829–4832.
(11) For reviews on carbonyl dehydrogenation, see: (a) Muzart, J. One-
Pot Syntheses of ,-Unsaturated Carbonyl Compounds through
Palladium-Mediated Dehydrogenation of Ketones, Aldehydes,
Esters, Lactones, and Amides. Eur. J. Org. Chem. 2010, 3779–
3790. (b) Stahl, S. S.; Diao, T. Oxidation Adjacent to C=X bonds
by Dehydrogenation. Comp. Org. Synth. 2014, 7, 178–212. (c)
Turlik, A.; Chen, Y.; Newhouse, T. R. Dehydrogenation Adjacent
to Carbonyls Using Palladium-Allyl Intermediates. Synlett 2016,
27, 331–336. (d) Iosub, A. V.; Stahl, S. S. Palladium-Catalyzed
Aerobic Dehydrogenation of Cyclic Hydrocarbons for the
Synthesis of Substituted Aromatics and Other Unsaturated
Products. ACS Catal. 2018, 6, 8201–8213. (e) Hirao, T. Synthetic
Strategy: Palladium-Catalyzed Dehydrogenation of Carbonyl
Compounds. J. Org. Chem. 2019, 84, 1687–1692.
(12) (a) Diao, T.; Stahl, S. S. Synthesis of Cyclic Enones via Direct
Palladium-Catalyzed Aerobic Dehydrogenation of Ketones, J. Am.
Chem. Soc. 2011, 133, 14566–14569. (b) Diao, T.; Wadzinski, T.
J.; Stahl, S. S. Direct aerobic ,-dehydrogenation of aldehydes
and ketones with a Pd(TFA)2/4,5-diazafluorenone catalyst. Chem.
Sci. 2012, 3, 887–891. (c) Diao, T.; Pun, D.; Stahl, S. S. Aerobic
(21) Pérez-Luna, A.; Botuha, C.; Ferreira, F.; Chemla, F.
Carbometalation of unactivated alkenes by zinc enolate
derivatives. New J. Chem. 2008, 32, 594–606.
ACS Paragon Plus Environment