Antibacterial chalcones and pyrazolines
8. Alcaraz L.E., Blanco S.E., Puig O.N., Tomas F., Ferretti F.H. (2000)
Antibacterial activity of flavonoids against methicillin-resistant
Staphylococcus aureus strains. J Theor Biol;205:231–240.
9. Joshi A.S., Li X.C., Nimrod A.C., ElSohly H.N., Walker L.A., Clark
A.M. (2001) Dihydrochalcones from Piper longicaudatum. Planta
Med;67:186–188.
10. Sivakumar P.M., Sobana P., Doble M. (2009) Synthesis, Biological
Evaluation, Mechanism of Action and Quantitative Structure–
Activity Relationship Studies of Chalcones as Antibacterial.
Chem Biol Drug Des;73:403–415.
11. Sivakumar P.M., Muthu Kumar T., Doble M. (2009) Antifungal
Activity, Mechanism and QSAR Studies on Chalcones. Chem Biol
Drug Des;74:68–79.
12. Sivakumar P.M., Seenivasan S.P., Kumar V., Doble M. (2007) Syn-
thesis, antimycobacterial activity evaluation, and QSAR studies
of chalcone derivatives. Bioorg Med Chem Lett;17:1695–1700.
13. Karthikeyan M.S., Holla B.A., Kumari N.A. (2007) Synthesis and
antimicrobial studies on novel chloro-fluorine containing hydroxy
pyrazolines. Eur J Med Chem;42:30–36.
14. Padmavathi V., Thriveni P., Sudhakar Reddy G., Deepti D. (2008)
Synthesis and antimicrobial activity of novel sulfone-linked bis
heterocycles. Eur J Med Chem;43:917–924.
15. Chimenti F., Bizzarri B., Manna F., Bolasco A., Secci D., Chimenti
P., Granese A., Rivanera D., Lilli D., Scaltrito M.M., Brenciaglia
M.I. (2005) Synthesis and in vitro selective anti-Helicobacter
pylori activity of pyrazoline derivatives. Bioorg Med Chem
Lett;15:603–607.
16. ꢀvila H.P., Smꢁnia E.F.A., Monache F.D., Jfflnior A.S. (2008) Struc-
ture–activity relationship of antibacterial chalcones. Bioorg Med
Chem;16:9790–9794.
17. Lin J., Rivett D.E., Wilshire J.F.K. (1977) The preparation and
photochemical properties of some 1,3-diphenyl-2-pyrazolines
containing a heteroaromatic substituent. Aust J Chem;30:629–
637.
PMS – 13: FTIR (KBr) 1665 cm)1(C=O). 1H NMR
(500 MHz): d 3.97 (6H, s), 6.93 (1H, d, J = 8 Hz), d 7.37 (2H, dd,
J = 8.5 Hz), d 7.56–7.58 (2H, m), d 7.61 (1H, d, J = 2 Hz), d
7.67 (1H, dd, J = 2 Hz, J¢ = 8.5 Hz), d 7.75 (1H, d, J = 15.5 Hz).
13C NMR (500 MHz): d 56.05, 56.10, 109.98, 110.76, 122.08,
123.05, 129.16,129.19, 129.22, 129.50, 131.14, 133.57, 136.18,
142.43, 149.31, 153.41, 188.23. HR-MS (m ⁄ z) for molecular for-
mula C17H15ClO3: calculated = 303.0784, found = 303.0788.
Spectral data for compound PMSPY – 7: FTIR (KBr)
1587 cm)1(C=N). 1H NMR (500 MHz): d 3.06 (1H, dd,
J = 7.5 Hz, J¢ = 17 Hz), d 3.80 (1H, dd, J = 12.5 Hz, J¢ = 17 Hz),
d 5.23 (1H, dd, J = 7.5 Hz, J¢ = 12.5 Hz), d 6.78–6.81 (1H, m), d
7.01–7.03 (2H, m), d 7.05–7.08 (2H, m), d 7.16–7.19 (2H, m), d
7.23–7.25 (2H, m), d 7.29–7.31 (2H, m), d 7.68–7.69 (2H, m). 13C
NMR (500 MHz): d 43.55, 64.00, 113.38, 115.57, 115.75, 119.44,
127.31, 127.51, 127.48, 127.54, 128.82, 128.84,128.99, 129.02,
129.37, 133.39, 140.94, 144.63, 145.80, 162.08, 164.06. HR-MS
(m ⁄ z) for molecular formula C21H16ClFN2: calculated = 351.1064,
found = 351.1064. Spectral data for compound PMSPY – 11:
FTIR (KBr) 1587 cm)1(C=N). 1H NMR (500 MHz): d 3.05
(1H, dd, J = 7.5 Hz, J¢ = 17 Hz), d 3.78 (1H, dd, J = 12.5 Hz,
J¢ = 17 Hz), d 3.89 (3H, s), d 3.97 (3H, s), d 5.18 (1H, dd,
J = 7.5 Hz, J¢ = 12.5 Hz), d 6.77–6.83 (2H, m), d 7.00–7.03 (3H,
m), d 7.16–7.19 (2H, m), d 7.23–7.30 (4H, m), d 7.48 (1H, d,
J = 1.5 Hz). 13C NMR (500 MHz): d 43.65, 55.95, 63.92, 108.14,
110.67, 113.33, 119.12, 119.19, 125.41, 125.28, 127.36, 128.79,
128.96, 129.09, 129.32, 129.43, 129.96, 133.28, 141.20, 144.89,
146.91, 149.18, 150.03. HR-MS (m ⁄ z) for molecular formula
C23H21ClN2O2: calculated = 393.1373, found = 393.1370.
22. Nielsen S.F., Boesen T., Larsen M., Schønning K., Kromann D.
(2004) Antibacterial chalcones – bioisosteric replacement of the
4¢-hydroxy group. Bioorg Med Chem;12:3047–3054.
23. Liu X.L., Xu Y.J., Go M.L. (2008) Functionalized chalcones
with basic functionalities have antibacterial activity against drug
sensitive Staphylococcus aureus. Eur J Med Chem;43:1681–
1687.
24. Nowakowska Z. (2007) A review of anti-infective and anti-
inflammatory chalcones. Eur J Med Chem;42:125–137.
25. Ansari F.L., Baseer M., Iftikhar M., Kulsoom A., Ullah S., Nazir
A., Shaukat I-ul-H, Mirza B. (2009) Microwave assisted synthe-
sis, antibacterial activity against Bordetella bronchiseptica of a
library of 3¢-hydroxyaryl and heteroaryl chalcones and molecular
descriptors-based SAR. ARKIVOC;X:318–332.
18. Candan F., Unlu M., Tepe B., Daferera D., Polissiou M., Sokmen
A., Akpulat A. (2003) Antioxidant and antimicrobial activity of
the essential oil and methanol extracts of Achillea millefolium
subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol;87:215–
220.
19. Sarker S. D., Nahar L., Kumarasamy Y. (2007) Microtitre plate-
based antibacterial assay incorporating resazurin as an indicator
of cell growth, and its application in the in vitro antibacterial
screening of phytochemicals. Methods;43:321–324.
20. Charles E.S., Agrawal V.K., Sharma S., Iyer R.N. (1979) Synthesis
of 2,5disubstituted benzimidazoles as potential antihookworm
and antimicrobial agents. Eur J Med Chem Chim Ther;14:435–
438.
26. Bhatia N.M., Mahadik K.R., Bhatia M.S. (2009) QSAR analy-
sis of 1,3-diaryl-2-propen-1-ones and their indole analogs
for designing potent antibacterial agents. Chem Pap;63:456–
463.
21. Spectral data for compound PMS -10: FTIR (KBr)
27. Munawar M.A., Azad M., Athar M., Groundwater P.W. (2008)
Synthesis and antimicrobial activity of quinoline-based 2-pyrazo-
lines. Chem Pap;62:288–293.
1665 cm)1(C=O). 1H NMR (500 MHz):
d 7.12 (1H, d,
J = 16 Hz), d 7.34–7.37 (3H, m), d 7.40 (1H, s), d 7.42 (1H, d,
J = 1.5 Hz), d 7.43–7.44 (2H, m), d 7.46–7.49 (3H, m). 13C NMR
(500 MHz): d193.41, 144.48, 138.95, 136.80, 132.94, 131.57,
131.31, 130.33, 129.71, 129.68, 129.40, 129.37, 129.29, 126.92,
126.63. HR-MS (m ⁄ z) for molecular formula C15H10Cl2O: calcu-
lated = 277.0631, found = 277.0631. Spectral data for compound
Note
ahttp://www.who.int/mediacentre/factsheets/fs194/en/ [accessed on
September 01 2010].
Chem Biol Drug Des 2010; 76: 407–411
411