10.1002/chem.202100690
Chemistry - A European Journal
FULL PAPER
[4]
[5]
a) S. P. McCluskey, C. Plisson, E. A. Rabiner, O. Howes, Eur. J.
Nucl. Med. Mol. Imaging 2019, 47, 451-489; b) P. M. Matthews, E.
A. Rabiner, J. Passchier, R. N. Gunn, Br. J. Clin. Pharmacol. 2011,
73, 175-186.
a) S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev. 2008,
108, 1501-1516; b) V. W. Pike, Curr. Med. Chem. 2016, 23, 1818-
1869; c) S. Lu, F. B. Simeon, S. Telu, L. Cai, V. W. Pike, The
Chemistry of labelling heterocycles with carbon-11 and fluorine-18
for biomedical imaging, in Advances in Heterocyclic Chemistry,
volume 132, E. F. V. Scriven, C. A. Ramsden (eds), Academic Press,
Cambridge, 2020, p 241-384.
a) B. H. Rotstein, S. H. Liang, M. S. Placzek, J. M. Hooker, A. D.
Gee, F. Dolle, A. A. Wilson, N. Vasdev, Chem. Soc. Rev. 2016, 45,
4708-4726; b) C. Taddei, V. W. Pike, EJNMMI Radiopharm. Chem.
2019, 4, 25; c) J. Eriksson, G. Antoni, B. Långstrom, O. Itsenko, Nucl.
Med. Biol. 2020, 92, 115-137.
A. K. Ghosh, M. Brindisi, J. Med. Chem. 2020, 63, 2751-2788.
a) D. Roeda, F. Dollé, Curr. Top. Med. Chem. 2010, 10, 1680-1700;
b) T. Fukumura, W. Mori, M. Ogawa, M. Fujinaga, M. R. Zhang, Nucl.
Med. Biol. 2021, 92, 138-148.
a) J. W. Hicks, A. A. Wilson, E. A. Rubie, J. R. Woodgett, S. Houle,
N. Vasdev, Bioorg. Med. Chem. Lett. 2012, 22, 2099-2101; b) J. W.
Hicks, J. Parkes, J. Tong, S. Houle, N. Vasdev, A. A. Wilson, Nucl.
Med. Biol. 2014, 41, 688-694; c) A. A. Wilson, A. Garcia, S. Houle,
O. Sadovski, N. Vasdev, Chem. Eur. J. 2011, 17, 259-264; d) A. K.
H. Dheere, S. Bongarzone, C. Taddei, R. Yan, A. D. Gee, Synlett
2015, 26, 2257-2260; e) A. K. H. Dheere, N. Yusuf, A. Gee, Chem.
Commun. 2013, 49, 8193-8195.
a) S. Kealey, S. M. Husbands, I. Bennacef, A. D. Gee, J. Passchier,
J. Label. Compd. Radiopharm. 2014, 57, 202-208; b) S. Roslin, P.
Brandt, P. Nordeman, M. Larhed, L. R. Odell, J. Eriksson, Molecules
2017, 22, 1688.
G. A. Brinkman, I. Hasslisewska, J. T. Veenboer, L. Lindner, Int. J.
Appl. Radiat. Isot. 1978, 29, 701-702.
a) P. Landais, C. Crouzel, Int. J. Rad. Appl. Instrum. A 1987, 38,
297-300; b) Y. Bramoulle, D. Roeda, F. Dollé, Tetrahedron Lett.
2010, 51, 313-316; c) M. Ogawa, Y. Takada, H. Suzuki, K. Nemoto,
T. Fukumura, Nucl. Med. Biol. 2010, 37, 73-76.
[
11C]Carbon Dioxide Production. [11C]carbon dioxide was prepared by
the 14N(p,)11C nuclear reaction by bombarding a nitrogen-1% oxygen gas
target (2.1 MPa) with a beam of protons (16 MeV, 5 µA) from a cyclotron
(PETrace; GE) for 5 min, typically generating 2 to 3 GBq of [11C]carbon
dioxide with a molar activity between 18 and 45 GBq/µmol.
[
11C]Carbon Monoxide Synthesis. Cyclotron-produced 11C]carbon
[
dioxide was converted into [11C]carbon monoxide using a modified Synthia
radiosynthesis apparatus. [11C]Carbon dioxide was first trapped on
molecular sieves (13X) from the released nitrogen-oxygen target gas. The
sieves were then purged with helium to remove residual oxygen. The
molecular sieve trap was then heated to 280 °C while being purged with
helium to release the [11C]carbon dioxide into a small stainless steel cryo-
trap filled with silica immersed in liquid nitrogen (–196 °C). The stainless
steel cryo-trap was then heated to release the trapped [11C]carbon dioxide
into a stream of helium that was passed through a heated molybdenum
column (875 °C). The generated [11C]carbon monoxide was separated
from residual [11C]carbon dioxide by passage over sodium hydroxide
coated on silica (ascarite) and then concentrated within a second stainless
steel cryo-trap filled with silica immersed in liquid nitrogen. The full process
typically required 11 to 12 min from the end of radionuclide production and
gave [11C]carbon monoxide in 71 ± 2% yield (mean ± SD; n = 37), based
on the proportion of the total radioactivity (decay-corrected) that was not
immobilized on ascarite.
[6]
[7]
[8]
[9]
[10]
Synthesis of
[
11C]1-Benzyl-3-phenylurea ([11C]4).
[
11C]Carbon
[11]
[12]
monoxide was passed over solid silver(II) fluoride and bubbled (5 mL/min)
through a solution of aniline (10 µmol) in acetonitrile (0.5 mL) for 5.5 min.
Benzylamine (1 µmol) in acetonitrile (0.1 mL) was added to the reaction
mixture.
[13]
a) G. D. Brown, D. Henderson, C. Steel, S. Luthra, P. M. Price, F.
Brady, Nucl. Med. Biol. 2001, 28, 991-998; b) T. Conway, M. Diksic,
J. Nucl. Med. 1988, 29, 1957-1960; c) F. Dollé, L. Martarello, Y.
Bramoulle, M. Bottlaender, A. D. Gee, J. Label. Compd.
Radiopharm. 2005, 48, 501-513.
Radio-HPLC Analysis and Yield Measurement. An aliquot of the
reaction mixture was diluted with water and injected onto HPLC. The
amount of isolated radioactive product was compared to that of the decay-
corrected amount of radioactivity injected onto HPLC to give the
radiochemical purity of the labelled compound in the reaction mixture. This
purity value was multiplied by the efficiency of the initial trapping of
radioactivity in the reaction vial (decay-corrected and assumed to be all
[14]
[15]
H. Babad, A. G. Zeiler, Chem. Rev. 1973, 73, 75-91.
L. Lemoucheux, J. Rouden, M. Ibazizene, F. Sobrio, M. C. Lasne, J.
Org. Chem. 2003, 68, 7289-7297.
J. E. Jakobsson, S. Lu, S. Telu, V. W. Pike, Angew. Chem. Int. Ed.
2020, 59, 7256-7260, ; Angew. Chem. 2020, 132, 7323-7327.
M. Mane, R. Balaskar, S. Gavade, P. Pabrekar, D. Mane, Arab. J.
Chem. 2013, 6, 423-427.
J. L. J. Blanco, C. S. Barría, J. M. Benito, C. O. Mellet, J. Fuentes,
F. Santoyo-González, J. M. G. Fernández, Synthesis 1999, 1907-
1914.
S. Perveen, S. M. A. Hai, R. A. Khan, K. M. Khan, N. Afza, T. B.
Sarfaraz, Synthetic Commun. 2005, 35, 1663-1674.
a) N. Zhang, X. M. Zhou, H. D. Quan, A. Sekiya, J. Fluor. Chem.
2015, 178, 208-213; b) H. D. Quan, N. Zhang, X. M. Zhou, H. Qian,
A. Sekiya, J. Fluor. Chem. 2015, 176, 26-30.
[16]
[17]
[18]
[
11C]carbonyl difluoride), thus giving a measure of the radiochemical yield
of the labelled compound based on [11C]carbon monoxide. Only negligible
amounts (< 0.1%) of radioactivity adhered to needles, stainless steel lines,
and the silver(II) fluoride column. The full process from end of cyclotron
irradiation to HPLC injection takes less than 20 minutes.
[19]
[20]
Acknowledgements
[21]
[22]
F. S. Fawcett, D. D. Coffman, C. W. Tullock, J. Am. Chem. Soc.
1962, 84, 4275-4285.
F. Liu, F. Li, A. Ma, E. Dobrovetsky, A. Dong, C. Gao, I. Korboukh,
J. Liu, D. Smil, P. J. Brown, S. V. Frye, C. H. Arrowsmith, M.
Schapira, M. Vedadi, J. Jin, J. Med. Chem. 2013, 56, 2110-2124.
A. R. Fersht, W. P. Jencks, J. Am. Chem. Soc. 1970, 92, 5432-5422.
a) Y. Du, I. Minn, C. Foss, W. G. Lesniak, F. Hu, R. F. Dannals, M.
G. Pomper, A. G. Horti, EJNMMI Res. 2020, 10, 67; b) P. D. Jones,
H. J. Tsai, Z. N. Do, C. Morisseau, B. D. Hammock, Bioorg. Med.
Chem. Lett. 2006, 16, 5212-5216.
The authors acknowledge support from the Intramural Research
Program of the National Institutes of Health (NIMH: Project
number ZIA-MH002793). The authors are grateful to the NIH
Clinical Center PET Department (Chief: Dr. P. Herscovitch) for
cyclotron production of carbon-11.
[23]
[24]
Keywords: carbon-11 • [11C]carbonyl difluoride • ureas •
positron emission tomography • radiochemistry
[1]
[2]
M. E. Phelps, Proc. Natl. Acad. Sci. USA 2000, 97, 9226-9233.
a) S. Chua, A. Groves, Biomedical imaging: applications and
advances, Elsevier, Cambridge; Waltham, 2014, p. 3-40; ; b) K.
Heurling, A. Leuzy, M. Jonasson, A. Frick, E. R. Zimmer, A.
Nordberg, M. Lubberink, Brain Res. 2017, 1670, 220-234; c) V. L.
Villemagne, V. Doré, S. C. Burnham, C. L. Masters, C. C. Rowe, Nat.
Rev. Neurol. 2018, 14, 225-236; d) M. Slifstein, A. Abi-Dargham,
Semin. Nucl. Med. 2017, 47, 54-63.
[3]
a) K. Herholz, W. D. Heiss, Mol. Imaging Biol. 2004, 6, 239-269; b)
A. Gallamini, C. Zwarthoed, A. Borra, Cancers (Basel) 2014, 6,
1821-1889.
8
This article is protected by copyright. All rights reserved.