Hetero-Diels-Alder Reaction of Danishefsky’s Diene
is that naphth-1-yl-TADDOL (4b) exhibits remarkably superior
performance compared to that of its analogues, such as phenyl-
TADDOL (4a) or naphth-2-yl-TADDOL (4c), in several HDA
or DA reactions in terms of both activity and enantioselectivity
(eq 1-3). For example, Rawal demonstrated that TADDOL
(R,R)-4b is the best catalyst for the HDA reaction of diene 1a
with benzaldehyde (2a), affording (S)-3a in 97% yield with 96%
ee (eq 1).3 In the catalysis of the all-carbon Diels-Alder reaction
of diene 1a with methacrolein (2b), TADDOL (R,R)-4b (91%
ee, 83% yield) is much more efficient than (R,R)-4a (31% ee,
30% yield) or (R,R)-4c (45% ee, 33% yield) (eq 2).4c We found
that the HDA reaction of Brassard’s diene (1b) with 2a under
the catalysis of (R,R)-4b afforded (S)-3c in 67% yield with 83%
ee (eq 3).5b On the contrary, the use of (R,R)-4a or (R,R)-4c as
the catalyst for the same reaction only resulted in a low yield
of product 3c in almost racemic form.
In contrast to the overwhelming majority of effort devoted
to the synthetic aspects of HDA reactions of carbonyl com-
pounds with dienes, the number of theoretical and mechanistic
studies is limited.9 In a study, McCarrick et al. used ab initio
methods to model the reaction between formaldehyde and 1,3-
butadiene.9b-c While the uncatalyzed reaction was found to
(2) For reviews, see: (a) Danishefsky, S. J.; Deninno, M. P. Angew.
Chem., Int. Ed. Engl. 1987, 26, 15. (b) Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2000, 39, 3558. (c) Maruoka, K. In Catalysis Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000, Chapter 8A. (d)
Jørgensen, K. A. In Cycloaddition Reactions in Organic Synthesis;
Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, Germany,
2002, pp 151-185. For more recent examples, see: (e) Fan, Q.; Lin, L.;
Liu, J.; Huang, Y.; Feng, X.; Zhang, G. Org. Lett. 2004, 6, 2185. (f) Fu,
Z.; Gao, B.; Yu, Z.; Yu, L.; Huang, Y.; Feng, X.; Zhang, G. Synlett 2004,
1772. (g) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem.
Soc. 2003, 125, 3793. (h) Du, H.; Long, J.; Hu, J.; Li, X.; Ding, K. Org.
Lett. 2002, 4, 4349. (i) Wang, B.; Feng, X.; Huang, Y.; Liu, H.; Cui, X.;
Jiang, Y. J. Org. Chem. 2002, 67, 2175. (j) Long, J.; Hu, J.; Shen, X.; Ji,
B.; Ding, K. J. Am. Chem. Soc. 2002, 124, 10. (k) Kii, S.; Hashimoto, T.;
Maruoka, K. Synlett 2002, 931. (l) Kezuka, S.; Mita, T.; Ohtsuki, N.; Ikeno,
T.; Yamada, T. Bull. Chem. Soc. Jpn. 2001, 74, 1333. (m) Liu, P.; Jacobsen,
E. N. J. Am. Chem. Soc. 2001, 123, 10772. (n) Thompson, C. F.; Jamison,
T. F.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 9974. (o) Doyle, M.
P.; Phillips, I. M.; Hu, W. J. Am. Chem. Soc. 2001, 123, 5366-5367. (p)
Kezuka, S.; Mita, T.; Ohtsuki, N.; Ikeno, T.; Yamada, T. Chem. Lett. 2000,
824. (q) Evans, D. A.; Johnson, J. S.; Olhava, E. J. J. Am. Chem. Soc.
2000, 122, 1635. (r) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 1999, 38, 2398. (s) Wang, B.; Feng, X.; Cui, X.; Liu, H.;
Jiang, Y. Chem. Commun. 2000, 1605. (t) Du, H.; Ding, K. Org. Lett. 2003,
5, 1091. (u) Du, H.; Zhang, X.; Wang, Z.; Ding, K. Tetrahedron 2005, 61,
9465. (v) Yuan, Y.; Long, J.; Sun, J.; Ding, K. Chem.sEur. J. 2002, 8,
5033. (w) Yuan, Y.; Li, X.; Sun, J.; Ding, K. J. Am. Chem. Soc. 2002, 124,
14866. (x) Doyle, M. P.; Valenzuela, M.; Huang, P. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5391. (y) Gademann, K.; Chavez, D. E.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2002, 41, 3059.
proceed via a concerted pathway with an unsymmetrical
transition structure (TS), coordination of the Lewis acid BH3
to formaldehyde not only makes it much more reactive, but also
increases the asynchronicity and charge separation (zwitterionic
character) in the TS, making a stepwise mechanism favored in
solution. Later, Jørgensen and co-workers reported a semiem-
pirical AM1 study on the mechanism of the HDA reaction of
(6) For reviews on organocatalysts, see: (a) Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed. 2001, 40, 3726. (b) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2004, 43, 5138. (c) Houk, K. N., List, B., Eds. Acc. Chem.
Res. 2004, 37, 487. (d) List, B., Bolm, C., Eds. AdV. Synth. Catal. 2004,
346, 1021-1022 (special issue on organocatalysis). (e) Seayad, J.; List, B.
Org. Biomol. Chem. 2005, 3, 719. (f) Berkessel, A., Groger, H., Eds.
Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005. For more
recent representative papers, see: (g) Wenzel, A. G.; Jacobsen, E. N. J.
Am. Chem. Soc. 2002, 124, 12964. (h) McDougal, N. T.; Schaus, S. E. J.
Am. Chem. Soc. 2003, 125, 12094. (i) Okino, T.; Hoashi, Y.; Takemoto,
Y. J. Am. Chem. Soc. 2003, 125, 12672. (j) Nugent, B. M.; Yoder, R. A.;
Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418. (k) McDougal, N. T.;
Trevellini, W. L.; Rodgen, S. A.; Kliman, L. T.; Schaus, S. E. AdV. Synth.
Catal. 2004, 346, 1231. (l) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356. (m) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 11804. (n) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.;
Takemooto, Y. J. Am. Chem. Soc. 2005, 127, 119. (o) Shi, M.; Chen, L.
H.; Li, C. Q. J. Am. Chem. Soc. 2005, 127, 3790. (p) Fuerst, D. E.; Jacobsen,
E. N. J. Am. Chem. Soc. 2005, 127, 8964. (q) Rueping, M.; Sugiono, E.;
Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781. (r) Akiyama,
T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
(s) Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 4102. (t)
Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558. (u)
Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466. (v)
Berkessel, A.; Cleemann, F.; Mukherjee, S.; Muller, T. N.; Lex, J. Angew.
Chem., Int. Ed. 2005, 44, 807. (w) Taylor, M. S.; Tokunaga, N.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2005, 44, 6700. (x) Akiyama, T.; Saitoh, Y.;
Morita, H.; Fuchibe, K. AdV. Synth. Catal. 2005, 347, 1523. (y) Hoffmann,
S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2005, 44, 7424-7427.
(7) For a comprehensive review on TADDOL chemistry, see: (a)
Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed. 2001, 40, 92.
For the preparation of TADDOL derivatives, see: (b) Beck, A. K.; Bastani,
B.; Plattner, D. A.; Petter, W.; Seebach, D.; Braunschweiger, H.; Gysi, P.;
La Vecchia, L. Chimia 1991, 45, 238.
(3) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003,
424, 146.
(4) For reviews on Brønsted acid catalysis, see: (a) Schreiner, P. R.
Chem. Soc. ReV. 2003, 32, 289. (b) Bolm, C.; Rantanen, T.; Schiffers, I.;
Zani, L. Angew. Chem., Int. Ed. 2005, 44, 1758. For recent examples, see:
(c) Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5846. (d) Momiyama, N.; Yamamoto, H. J. Am. Chem.
Soc. 2005, 127, 1080. (e) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am.
Chem. Soc. 2005, 127, 9360. (f) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe,
K. Org. Lett. 2005, 7, 2583. (g) Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun,
L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc. 2005, 127,
9285. (h) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.;
Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (i) Tang, Z.;
Jiang, F.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5755.
(5) For a highlight on the activation of carbonyl compounds by double-
hydrogen-bonding catalysts, see: (a) Pihko, P. M. Angew. Chem., Int. Ed.
2004, 43, 2062. For recent examples of chiral hydrogen-bonding catalyst-
mediated HDA reactions between 1,3-diene and carbonyl compounds, see:
(b) Du, H.; Zhao, D.; Ding, K. Chem.sEur. J. 2004, 10, 5964. (c) Unni,
A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005,
127, 1336. (d) Rajaram, S.; Sigman, M. S. Org. Lett. 2005, 7, 5473.
(8) For discussions on solid-state photoreactions of TADDOL-included
carbonyl compounds, see: (a) Toda, F. Pure Appl. Chem. 2001, 73, 1137.
(b) Tanaka, K.; Toda, F. Chem. ReV. 2000, 100, 1025.
J. Org. Chem, Vol. 71, No. 7, 2006 2863