CH C᎐N) and 3.93–2.90 (16 H, m, other SCH ) (CH CH CH
2
᎐
Acknowledgements
2
2
2
2
coincident with solvent peaks at 2.20–1.90); δC(CD3CN)
144.99, 141.33 and 132.78 (aryl CN), 131.35, 123.74 and 118.20
(aryl CH), 43.26, 42.61, 42.35, 39.18, 38.78, 36.14 (2 C), 32.25,
26.26 (CH2) (CH at 118.20 coincident with CD3CN, detected
We thank the EPSRC for support and the EPSRC National
Mass Spectrometry Service at the University of Swansea
for electrospray mass spectra. We also thank Professors R. M.
Kellogg and P. Comba for details of unpublished results.
using DEPT 90 and 135; C᎐N not detected but possibly coinci-
᎐
dent with one of the aryl CN peaks; H connectivity confirmed
using DEPT); m/z (positive-ion electrospray, MeOH, 80 V) 567
(Mϩ Ϫ 2 BF4, 100%).
Crystals suitable for X-ray analysis were grown by diffusion
of Et2O vapour into an MeCN solution of the complex. They
were found to be of composition [Pd(L3)][BF4]2ؒ1.5MeCN.
References
1 A. J. Blake, D. W. Bruce, I. A. Fallis, S. Parsons and M. Schröder,
J. Chem. Soc., Chem. Commun., 1994, 2471; A. J. Blake, D. W. Bruce,
I. A. Fallis, S. Parsons, H. Richtzenhain, S. A. Ross and
M. Schröder, Philos. Trans. R. Soc. London, Ser. A, 1996, 354, 395.
2 F. Vögtle in Supramolecular Chemistry, Wiley, Chichester, 1991,
pp. 231–290.
3 V. B. Pett, G. H. Leggett, T. H. Cooper, P. R. Reed, D. Situmeang,
L. A. Ochrymowycz and D. B. Rorabacher, Inorg. Chem., 1988, 27,
2164; M. Tomoi, O. Abe, N. Takazu and H. Kakiuchi, Makromol.
Chem., 1983, 184, 2431.
4 J. Buter, R. M. Kellogg and F. van Bolhuis, J. Chem. Soc., Chem.
Commun., 1990, 282.
5 R. J. Smith, S. N. Salek, M. J. Went, P. J. Blower and N. J. Barnard,
J. Chem. Soc., Dalton Trans., 1994, 21, 3165; R. J. Smith, G. D.
Admans, A. P. Richardson, H. J. Kuppers and P. J. Blower, J. Chem.
Soc., Chem. Commun., 1991, 475.
6 (a) J. Buter, R. M. Kellogg and F. van Bolhuis, J. Chem. Soc., Chem.
Commun., 1991, 910; (b) W. N. Setzer, S. Afshar, N. L. Burns, L. A.
Ferrante, A. M. Hester, E. J. Meehan, jun., G. J. Grant, S. M. Isaac,
C. P. Laudeman, C. M. Lewis and D. G. VanDerveer, Heteroat.
Chem., 1990, 1, 375; (c) L. R. Sutton, A. J. Blake, W.-S. Li and
M. Schröder, Acta Crystallogr., Sect. C, in the press.
7 K. Saito, I. Taninaka, S. Murakami and A. Muromatsu, Anal.
Chim. Acta, 1994, 299, 137; K. Yamashita, K. Kurita, K. Ohara,
K. Tamura, M. Nango and K. Tsuda, React. Funct. Polym., 1996,
31, 47; G. De Santis, L. Fabbrizzi, M. Licchelli, C. Mangano and
D. Sacchi, Inorg. Chem., 1995, 34, 3581; G. De Santis, L. Fabbrizzi,
M. Licchelli, C. Mangano, D. Sacchi and N. Sardone, Inorg. Chim.
Acta, 1997, 257, 69.
[Pt(L3)][CF3SO3]2. To a stirred suspension of L3 (11 mg,
0.024 mmol) in MeCN (5 cm3) in a round-bottomed flask (25
cm3) was added a solution of [Pt(EtCN)4][CF3SO3]2 (17 mg,
0.024 mmol) in MeCN (5 cm3). The flask was stoppered and the
mixture stirred for 24 h at room temperature. After this time
a faintly cloudy yellow solution had formed which was fil-
tered by gravity. The filtrate was evaporated, the residue taken
up in MeCN (2 cm3) and precipitated by layering with Et2O
and storing at 4 ЊC for 16 h. A yellow powder was isolated by
suction filtration, washed with Et2O (2 × 5 cm3) and dried
in air.
[Pt(L3)][CF3SO3]2: yield 17 mg, 0.018 mmol (75%) (Found: C,
25.3; H, 2.9; N, 6.0; Pt, 19.0. C18H22F6N4O10PtS6ؒEt2O requires
C, 25.7; H, 3.1; N, 5.4; Pt, 18.9%); m.p. 155–160 ЊC (decomp.);
ν max/cmϪ1 3454m, 3295w, 2983w, 2926w, 1519s, 1596m, 1502s,
1421w, 1343vs, 1316m, 1261vs, 1165s, 1097w, 1030s, 638s and
518w; δH(CD3CN) 11.16 (1 H, s, NH), 9.00, 8.44, 7.97 (each 1
H, m, aryl), 4.63–4.40 (3 H, m), 3.96–2.85 (m, 13 H, SCH2) and
2.12 (H2O, conceals CH2CH2CH2); δC(CD3CN) 144.99, 141.39,
140.53, 132.60 (C᎐N and aryl CN), 131.40, 123.80, 120.01 (aryl
᎐
CH), 43.42, 43.17, 42.27, 41.23, 38.95, 38.47, 36.61, 32.75, 26.12
(other CH); m/z (positive-ion electrospray, MeCN) 958
(Mϩ ϩ 2 H) and 657 (Mϩ Ϫ 2 CF3SO3Ϫ Ϫ H) (both peak sets
agree closely with theoretical distributions).
8 J. J. H. Edema, J. Buter, R. M. Kellogg, A. L. Spek and F. van
Bolhuis, J. Chem. Soc., Chem. Commun., 1992, 1558.
9 A. J. Blake and M. Schröder, Adv. Inorg. Chem., 1990, 35, 1;
S. R. Cooper, Struct. Bonding (Berlin), 1990, 72, 1.
10 M. N. Bell, A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde,
A. J. Lavery, G. Reid and M. Schröder, J. Inclusion Phenom., 1987,
5, 167.
Crystallography
11 A. J. Blake, W.-S. Li, M. Schröder, H. Richtzenhain and L. R.
Sutton, manuscript in preparation.
12 J. J. H. Edema, J. Buter, F. S. Schoonbeek, R. M. Kellogg, F. van
Bolhuis and A. L. Spek, Inorg. Chem., 1994, 33, 2448.
13 A. I. Vogel, Elementary Practical Organic Chemistry Part 2:
Table 4 summarises the crystal data, data collection, structure-
solution and refinement parameters for ligands L3–L5 and the
complex [Pd(L3)][BF4]2ؒ1.5MeCN. All structures were solved
using direct methods and all non-hydrogen atoms except for
those in disordered groups were refined anisotropically. Hydro-
gen atoms were placed in calculated positions and refined using
a riding model.
Qualitative Organic Analysis, Longmans, Green
& Co. Ltd.,
London, 2nd edn., 1966, pp. 113–119.
14 F. H. Allen and O. Kennard, Chem. Des. Autom. News, 1993, 8, 1,
31.
The asymmetric unit of the complex was found to contain
two MeCN sites, one of which was half-occupied: disorder of
the full-occupancy MeCN was successfully modelled by an
approximately equal distribution of two orientations. Disorder
15 C. A. Hunter, Chem. Soc. Rev., 1994, 23, 101.
16 N. N. Greenwood and A. Earnshaw, Chemistry of the Elements,
Pergamon, Oxford, 1984, p. 304.
17 (a) A. J. Blake, A. J. Holder, T. I. Hyde, H. J. Kuppers, M. Schröder,
S. Stotzel and K. Wieghardt, J. Chem. Soc., Chem. Commun., 1989,
1600; (b) P. Comba, A. Fath, B. Nuber and A. Peters, J. Org. Chem.
in the press.
18 G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
19 R. R. Thomas and A. Sen, Inorg. Synth., 1990, 28, 128; V. Y.
Kukushkin, Å. Oskarsson and L. I. Elding, Zh. Obsch. Khim., 1994,
64, 881.
20 G. M. Sheldrick, SHELXTL PC, version 5.03, Siemens Analytical
Instrumentation, Madison, WI, 1994.
Ϫ
in one BF4 was modelled using two-fold rotation about the
B(1)᎐F(1) vector, whilst the other was modelled as two tetra-
hedra with a common centre at B(2). Disorder in the cation was
modelled by a 180Њ rotation about the C(13)᎐N(15) vector with
a 65:35 random distribution. The symmetry of the unit cell
imparts the racemic nature of the crystal. The phenyl ring was
restrained to be flat to within 0.02 Å with C᎐C distances of
1.40(2) Å.
Structure solution and least-squares refinement for all crys-
tals was carried out using Dell Dimension 133 MHz Pentium
personal computers running SHELXTL PC software20 except
for the structure solution for L4 which was performed using
SHELXS 86.22
21 J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105.
22 G. M. Sheldrick, SHELXS 86, Acta Crystallogr., Sect. A, 1990, 46,
467.
CCDC reference number 186/773.
Received 15th August 1997; Paper 7/05996E
284
J. Chem. Soc., Dalton Trans., 1998, Pages 279–284