Full Paper
5.38 (dd, J = 6.9, 4.8 Hz, 1H, A1OH5′); 5.29 (d, J = 5.1 Hz, 1H, A2OH3′);
δ = 157.5 (A1C6); 157.2 (A2C6); 153.7 (A1C2); 153.7 (A1C2); 153.4
5.17 (d, J = 5.2 Hz, 1H, A1OH3′); 4.71 (q, J = 5.6 Hz, 1H, A2H2′); 4.50 (A2C2); 150.3 (A1C4); 149.6 (A2C4); 141.4 (A1C8); 140.7 (A2C8); 121.7
(m, 1H, A1H2′); 4.32 (m, 1H, A1H3′); 4.10 (m, 1H, A2H3′); 3.98 (m, 2H, (A1C5); 121.1 (A2C5); 90.4 (A2C1′); 89.2 (A1C1′); 88.6 (A1C4′); 83.5 (A2C4′);
A1H4′ & A2H4′); 3.72–3.65, 3.55–3.52 (m, 4H, A1H5′, A1H5′′, 2′OCH2); 81.2 (A1C2′); 81.1 (OCH2S); 74.5 (A2C2′); 73.9 (A2C3′); 71.2 (A1C3′); 63.3
2.90–2.79 (m, 2H, A2H5′, A2H5′′); 2.65 (m, 2H, CH2S). 13C-NMR (A1C5′); 42.8 (A2C5′). HRMS (ESI+): m/z calcd. for C21H27N10O7S2 [M +
(150 MHz, [D6]DMSO) δ = 156.14 &156.05 (A1C6 & A2C6); 152.65 &
152.52 (A1C2 & A2C2); 149.5 (A2C4); 149.0 (A1C4); 139.74 (A2C8);
139.66 (A1C8); 119.3 (A1C5); 119.1 (A2C5); 87.2 (A2C1′); 86.1 (A1C4′);
86.0 (A1C1′); 83.8 (A2C4′); 81.0 (A1C2′); 72.6 (A2C2′); 72.5 (A2C3′); 69.5
(A1C5′ or 2′OCH2); 68.9 (A1C3′); 61.3 (A1C5′ or 2′OCH2); 34.2 (A2C5′);
31.2 (CH2S). HRMS (ESI+): m/z calcd. for C22H29N10O7S [M + H]+:
577.1933, found 577.1933.
H]+: 595.1506, found 595.1505.
Acknowledgments
Rostom Ahmed-Belkacem thanks the University of Montpellier
for financial support.
S-(5′-O-(4,4′-Dimethoxytrityl-2′-O-methylthioadenosyl)-5′-thio-
adenosine (19): To a solution of 17[21] (202 mg, 0.26 mmol,
1.00 equiv.) in MeOH (3.5 mL) was added 18[22a] (200 mg,
0.46 mmol, 1.80 equiv.) and an ammonia solution (7 M in MeOH)
(7.5 mL). After stirring for 20 min at –10 °C under argon, the solvents
were removed and the resulting residue was purified by chromatog-
raphy (dry-load) on reversed-phase silica gel column C18 with a 20–
Keywords: Bisubstrate · RNA 2′-O-methylation · Transition
states · Viral RNA methyltransferases · Nucleosides
[1] W.-S. Ryu, in Molecular Virology of Human Pathogenic Viruses (Ed.: W.-S.
Ryu), Academic Press, Boston, 2017, pp. 289–302.
[2] a) D. W. Leung, G. K. Amarasinghe, Curr. Opin. Struct. Biol. 2016, 36, 133–
141; b) E. Decroly, B. Canard, Curr. Opin. Virol. 2017, 24, 87–96; c) M.
Ringeard, V. Marchand, E. Decroly, Y. Motorin, Y. Bennasser, Nature 2019,
565, 500–504.
70 % linear gradient of acetonitrile in 50 mM TEAAc buffer, pH 7.
The fractions containing 19 with more than 75 % purity were
pooled and concentrated to dryness. Traces of TEAAc salts were
removed by several co-evaporations with water and acetonitrile to
give compound 19 (92 mg, 0.102 mmol, 40 % corrected yield) with
75 % purity determined by HPLC analysis at 260 nm. The main con-
taminant was the 5′-O-DMTr adenosine. Full characterization of 19
was performed with a 99 % pure fraction isolated after purification.
1H-NMR (400 MHz, 1,4-[D8]Dioxane) δ = 8.16 (s, 1H, H2 or H8); 8.14
(s, 1H, H2 or H8); 8.01 (s, 1H, H2 or H8); 7.95 (s, 1H, H2 or H8); 7.43–
7.13 (m, 9H, HDMTR); 6.78 (m, 4H, HDMTR); 6.47 (br s, 4H, NH2); 6.15
(d, J = 3.7 Hz, 1H, A1H1′); 5.84 (d, J = 4.4 Hz, 1H, A2H1′); 5.05 (m, 2H,
O-CH2-S); 4.93 (m, 1H, A1H2′); 4.82–4.66 (m, 2H, A2OH3′, A2H2′); 4.49
(d, 1H, A1H3′); 4.42–4.34 (m, 1H, A2OH2′); 4.29 (m, 1H, A2H3′); 4.23–
4.16 (m, 1H, A2H4′); 4.16–4.11 (m, 1H, A1H4′); 4.03 (d, J = 7.2 Hz, 1H,
A1OH3′); 3.73 (s, 6H, OCH3DMTR); 3.42–3.37 (m, 2H, A1H5′H5′′); 3.08 (d,
J = 6.3 Hz, 2H, A2H5′H5′′). 13C-NMR (150 MHz, 1,4-[D8]Dioxane) δ =
159.5 (Cq-OCH3 DMTR); 157.0 et 157.1 (A1C5 et A2C5); 153.7 et 153.9
(A1C6 et A2C6); 150.3 (A1C4 et A2C4); 146.1 (Cq DMTR); 140.2 et 140.6
(A1C8 et A2C8); 136.8 (Cq DMTR); 127.5, 128.5, 129.0, 130.9 (CH DMTR);
120.8 et 120.9 (A1C2 et A2C2); 113.9 (CHDMTR); 90.3 (A1C1′); 87.7 (A2C1′);
87.1 (O-Cq DMTR); 84.4 (A1C4′); 83.6 (A2C4′); 81.2 (O-CH2-S); 80.5 (A1C2′);
74.5 (A2C2′); 73.8 (A2C3′); 70.7 (A1C3′); 64.2 (A1C5′); 55.3 (O-CH3); 42.8
(A2C5′). HRMS (ESI–): m/z calcd. for C42H43N10O9S2 [M – H]–:
895.2661, found 895.2679.
[3] E. Decroly, F. Ferron, J. Lescar, B. Canard, Nat. Rev. Microbiol. 2011, 10,
51–65.
[4] a) B. Martin, B. Coutard, T. Guez, G. C. Paesen, B. Canard, F. Debart, J.-J.
Vasseur, J. M. Grimes, E. Decroly, Nucleic Acids Res. 2018, 46, 7902–7912;
b) B. Coutard, K. Barral, J. Lichiere, B. Selisko, B. Martin, W. Aouadi, M. O.
Lombardia, F. Debart, J. J. Vasseur, J. C. Guillemot, B. Canard, E. Decroly,
J. Virol. 2017, 91, e02202–02216; c) H. Dong, D. C. Chang, M. H. Hua, S. P.
Lim, Y. H. Chionh, F. Hia, Y. H. Lee, P. Kukkaro, S. M. Lok, P. C. Dedon, P. Y.
Shi, PloS Pathog. 2012, 8, e1002642.
[5] a) R. Zust, L. Cervantes-Barragan, M. Habjan, R. Maier, B. W. Neuman, J.
Ziebuhr, K. J. Szretter, S. C. Baker, W. Barchet, M. S. Diamond, S. G. Siddell,
B. Ludewig, V. Thiel, Nat. Immunol. 2011, 12, 137–143; b) S. C. Devarkar,
C. Wang, M. T. Miller, A. Ramanathan, F. Jiang, A. G. Khan, S. S. Patel, J.
Marcotrigiano, Proc. Natl. Acad. Sci. USA 2016, 113, 596–601.
[6] a) S. Daffis, K. J. Szretter, J. Schriewer, J. Li, S. Youn, J. Errett, T. Y. Lin, S.
Schneller, R. Zust, H. Dong, V. Thiel, G. C. Sen, V. Fensterl, W. B. Klimstra,
T. C. Pierson, R. M. Buller, M. Gale Jr., P. Y. Shi, M. S. Diamond, Nature
2010, 468, 452–456; b) P. Kumar, T. R. Sweeney, M. A. Skabkin, O. V.
Skabkina, C. U. Hellen, T. V. Pestova, Nucleic Acids Res. 2014, 42, 3228–
3245.
[7] J. Zhang, Y. G. Zheng, ACS Chem. Biol. 2016, 11, 583–597.
[8] L. Halby, Y. Menon, E. Rilova, D. Pechalrieu, V. Masson, C. Faux, M. A.
Bouhlel, M.-H. David-Cordonnier, N. Novosad, Y. Aussagues, A. Samson,
L. Lacroix, F. Ausseil, L. Fleury, D. Guianvarc'h, C. Ferroud, P. B. Arimondo,
J. Med. Chem. 2017, 60, 4665–4679.
[9] a) B. Masjost, P. Ballmer, E. Borroni, G. Zürcher, F. K. Winkler, R. Jakob-
Roetne, F. Diederich, Chem. Eur. J. 2000, 6, 971–982; b) C. Lerner, B. Mas-
jost, A. Ruf, V. Gramlich, R. Jakob-Roetne, G. Zürcher, E. Borroni, F. Dieder-
ich, Org. Biomol. Chem. 2003, 1, 42–49.
[10] a) J. Dowden, W. Hong, R. V. Parry, R. A. Pike, S. G. Ward, Bioorg. Med.
Chem. Lett. 2010, 20, 2103–2105; b) M. van Haren, L. Q. van Ufford, E. E.
Moret, N. I. Martin, Org. Biomol. Chem. 2015, 13, 549–560.
[11] N. Babault, A. Allali-Hassani, F. Li, J. Fan, A. Yue, K. Ju, F. Liu, M. Vedadi, J.
Liu, J. Jin, J. Med. Chem. 2018, 61, 1541–1551.
[12] L. Halby, N. Marechal, D. Pechalrieu, V. Cura, D.-M. Franchini, C. Faux, F.
Alby, N. Troffer-Charlier, S. Kudithipudi, A. Jeltsch, W. Aouadi, E. Decroly,
J.-C. Guillemot, P. Page, C. Ferroud, L. Bonnefond, D. Guianvarc′h, J. Cava-
relli, P. B. Arimondo, Phil. Trans. R. Soc. B 2018, 373, 20170072.
[13] E. Benghiat, P. A. Crooks, R. Goodwin, F. Rottman, J. Pharm. Sci. 1986, 75,
142–145.
[14] C. Atdjian, L. Iannazzo, E. Braud, M. Ethève-Quelquejeu, Eur. J. Org. Chem.
2018, 2018, 4411–4425.
[15] S. Oerum, M. Catala, C. Atdjian, F. Brachet, L. Ponchon, P. Barraud, L.
Iannazzo, L. Droogmans, E. Braud, M. Ethève-Quelquejeu, C. Tisné, RNA
Biol. 2019, 16, 798–808.
S-(2′-O-Methylthioadenosyl)-5′-thioadenosine (5): The mixture
of 19 and the by-product 5′-O-DMTr adenosine was treated with a
solution of 80 % acetic acid in water (8.76 mL) and stirred for 15 min
at room temperature. The mixture solution was washed with CHCl3
(10 × 5 mL) then Et2O (1 × 10 mL). The solvent was removed under
vacuum and the resulting residue was purified by chromatography
on a reversed-phase silica gel column C18 (4 g, 40 μm) with a
0–25 % linear gradient of acetonitrile in TEAAc buffer 50 mM, pH 7.
The fractions containing the pure compound was pooled, concen-
trated and lyophilized to give 5 as a white powder (23 mg,
38.6 μmol, 15 % over two steps) with 99 % purity determined by
HPLC analysis at 260 nm. 1H-NMR (400 MHz, 1,4-[D8]Dioxane) δ =
8.19 (s, 1H, A1H2); 8.18 (s, 1H, A2H2); 7.98 (s, 1H, A1H8); 7.97 (s, 1H,
A2H8); 6.62 (br s, 2H, NH2); 6.50 (br s, 2H, NH2); 6.00–5.95 (m, 2H,
A1H1′, A1OH5′); 5.86 (d, J = 4.3 Hz, A2H1′); 4.99 (m, 1H, A1H2′); 4.82
(s, 2H, OCH2S); 4.80 (m, 2H, A2H2′, A2OH2′); 4.44 (m, 2H, A2OH3′,
A2H3′); 4.30 (m, 1H, A2H3′); 4.12 (m, 2H, A1H4′, A2H4′); 3.99 (d, J =
4.2 Hz, A1OH3′); 3.84–3.59 (m, 2H, A1H5′, A1H5′′); 3.00 (dd, J = 1.7 Hz,
J = 5.9 Hz, 2H, A2H5′, A2H5′′). 13C-NMR (125 MHz, 1,4-[D8]Dioxane)
Eur. J. Org. Chem. 2019, 6486–6495
6494
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim