P e r s o n a l A c c o u n t
T H E C H E M I C A L R E C O R D
1
2
3
4
5
6
7
8
9
environmentally benign oxidant hydrogen peroxide should be
mentioned, which may be used in virtually substoichiometric
amounts. In recent years, the substrate scope of these catalyst
systems continues broadening, in parallel with the design of
novel ligand architectures and fine tuning catalysts for
different applications. Altogether, this brings Mn amino-
pyridine and related catalysts on the top of current catalytic
asymmetric oxidation catalysis.
Acknowledgements
The authors are grateful to the Russian Science Foundation
for the financial support (grant 17-13-01117), and thank Dr.
M. V. Shashkov for the GC-MS measurements. R.V.O.
acknowledges the Russian Foundation for Basic Research
(grant 16-33-00014), which support was used to obtain some
so far unpublished experimental results (SI), surveyed in the
present review.
In addition, Mn aminopyridine catalysts have appeared
10 extremely fruitful in theoretical respect, providing several
11 examples of novel or rare catalytic effects. The mechanistic
12 data available so far corroborate the involvement of electro-
13 philic, presumably manganese(V)-oxo species, capable of
14 oxidizing both olefinic groups in epoxides (via rate-limiting
15 electron-transfer) and CÀH groups in alkanes and alcohols
16 (via rate-limiting hydrogen-atom or hydride transfer). The
17 oxidation of racemic secondary benzylic alcohols on Mn
18 aminopyridine catalysts has been found occurring stereo-
19 selectively, and, remarkably, has revealed a novel non-linear
20 effect in asymmetric catalysis, exhibiting itself as progressive
21 increase of the stereoselectivity factor (krel) in line with
22 increasing ratio of the less reactive vs. more reactive alcohol
23 over the reaction course. To unambiguously identify this
24 effect, the term asymmetric autoamplification has been
25 proposed.[1q]
[1] a) L. Que Jr., W. B. Tolman, Nature 2008, 455, 333–340;
b) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem.
2001, 40, 2004–2021; c) E. P. Talsi, K. P. Bryliakov, Coord.
Chem. Rev. 2012, 256, 1418–1434; d) H. Srour, P. Le Maux, S.
Chevance, G. Simonneaux, Coord. Chem. Rev. 2013, 257,
3030–3050; e) G. De Faveri, G. Ilyashenko, M. Watkinson,
Chem. Soc. Rev. 2011, 40, 1722–1760; f) R. Irie, K. Noda, Y.
Ito, N. Matsumoto, T. Katsuki, Tetrahedron Lett. 1990, 31,
7345–7348 ; g) W. Zhang, J. L. Loebach, S. R. Wilson, E. N.
Jacobsen, J. Am.Chem. Soc. 1990, 112, 2801–2803 ; h) G. B.
Shul’pin, G. V. Nizova, Y. N. Kozlov, I. G. Pechenkina, New J.
Chem. 2002, 26, 1238–1245 ; i) G. B. Shul’pin, Y. N. Kozlov,
S. N. Kholuiskaya, M. I. Plieva, J. Mol. Catal. A : Chem. 2009,
299, 77–87; j) G. B. Shul’pin, D. S. Nesterov, L. S. Shul’pina,
A. J. L. Pombeiro, Inorg. Chim. Acta 2017, 455, 666–676;
k) V. B. Romakh, B. Therrien, G. Su¨ss-Fink, G. B. Shul’pin,
Inorg. Chem. 2007, 46, 1315–1331 ; l) K. P. Bryliakov, E. P.
Talsi, Coord. Chem. Rev. 2014, 276, 73–96; m) R. V. Otten-
bacher, E. P. Talsi, K. P. Bryliakov, Catal. Today 2016, 278, 30–
39; n) R. V. Ottenbacher, D. G. Samsonenko, E. P. Talsi, K. P.
Bryliakov, Org. Lett. 2012, 14, 4310–4313; o) D. Shen, C.
Miao, S. Wang, C. Xia, W. Sun, Org. Lett. 2014, 16, 1108–
1111; p) M. Milan, M. Bietti, M. Costas, ACS Cent. Sci. 2017,
3, 196À204; q) E. P. Talsi, D. G. Samsonenko, K. P. Bryliakov,
ChemCatChem 2017, 9, 2599–2607; r) M. S. Chen, M. C.
White, Science, 2007, 318, 783–787; s) E. P. Talsi, D. G.
Samsonenko, R. V. Ottenbacher, K. P. Bryliakov, ACS Catal.
2017, Manuscript in preparation.
26
A novel reactivity feature has been observed, leading to
27 the formation of a mixture of cumyl alcohol (major product)
28 and cumyl carboxylate (minor product) in the oxidation of
29 cumenes with catalyst systems Mn complex/H2O2/carboxylic
30 acid. This mixture of products is due to the competition
31 between the OH and OC(O)R rebound, following the rate-
32 limiting hydrogen-atom or hydride abstraction step. It is very
33 likely that such “bifurcated rebound” also accounts for the
34 formation of benzyl acetate by-product in the course of
35 ethylbenzene oxidation.[1o,5b]
36
In addition, the Mn aminopyridine based catalysts have
[2] a) A. Murphy, G. Dubois, T. D. P. Stack, J. Am. Chem. Soc.
2003, 125, 5250–5251; b) L. Gomez, I. Garcia-Bosch, A.
Company, X. Sala, X. Fontrodona, X. Ribas, M. Costas, Dalton
Trans. 2007, 47, 5539–5545; c) M. Wu, B. Wang, S. Wang, C.
Xia, W. Sun, Org. Lett. 2009, 11, 3622–3625; d) N. C. Maity,
P. K. Bera, D. Ghosh, S. H. R. Abdi, R. I. Kureshy, N. H.
Khan, H. C. Bajaj, E. Suresh, Catal. Sci. Technol. 2014, 4, 208–
217; e) R. V. Ottenbacher, K. P. Bryliakov, E. P. Talsi, Adv.
Synth. Catal. 2011, 353, 885–889; f) I. Garcia-Bosch, X. Ribas,
M. Costas, Adv. Synth. Catal. 2009, 351, 348–352; g) B. Wang,
C. Miao, S. Wang, C. Xia, W. Sun, Chem. Eur. J. 2012, 18,
6750–6753; h) X. Wang, C. Miao, S. Wang, C. Xia, W. Sun,
ChemCatChem 2013, 5, 2489–2494; i) D. Shen, C. Miao, S.
Wang, C. Xia, W. Sun, Eur. J. Inorg. Chem. 2014, 5777–5782;
37 provided a rare example of chiral additive amplification, the
38 effect which, in particular, enabled an achiral catalyst to
39 mediate olefin epoxidation in enantioselective fashion.[3g]
40
In spite of the tremendous progress of Mn aminopyridine
41 catalysts in the last years, challenging problems remain, e.g.
42 (1) the lack of direct spectroscopic evidence for the active
43 oxidizing species, (2) the lack of Mn catalysts, capable of
44 efficiently oxidizing strong CÀH bonds (with BDEs>
45 100 kcal/mol), (3) the absence of Mn catalyst systems for the
46 direct enantioselective hydroxylation of prochiral methylenic
47 sites with acceptable alcohol selectivity, (4) the lack of
48 preparative-scale synthetic procedures, etc. As it is, the
49 authors are pleased to predict that the future of Mn
50 aminopyridine catalysts may be even better than their past
51 and present, in both fundamental and practical aspects.
52
´
j) I. Garcia-Bosch, L. Gomez, A. Polo, X. Ribas, M. Costas,
Adv. Synth. Catal. 2012, 354, 65–70.
[3] a) O. Yu. Lyakin, R. V. Ottenbacher, K. P. Bryliakov, E. P. Talsi,
´
ACS Catal. 2012, 2, 1196–1202; b) O. Cusso, I. Garcia-Bosch,
Chem. Rec. 2017, 17, 1–14
© 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Wiley Online Library
12