ORGANIC
LETTERS
2006
Vol. 8, No. 21
4791-4794
Electrophilic Allylations and
Benzylations of Indoles in Neutral
Aqueous or Alcoholic Solutions‡
Martin Westermaier and Herbert Mayr*
Department Chemie und Biochemie, Ludwig Maximilians UniVersita¨t Mu¨nchen,
Butenandtstr. 5-13 (Haus F), 81377 Mu¨nchen, Germany
Received July 27, 2006
ABSTRACT
Indoles are allylated and benzylated in moderate to quantitative yield when stirred with allyl and benzyl halides in 80% aqueous acetone in
the presence of NH4HCO3 at room temperature.
Facile access to substituted indoles is of general interest
because indoles are building blocks of many natural products
and have applications as pharmaceuticals, as agrochemicals,
and in materials science.1,2 Among the numerous methods
to synthesize substituted indoles, substitution reactions play
an important role, among which Friedel-Crafts-type reac-
tions are relatively rare. Although the BF3‚OEt2-induced
prenylation of indole with prenyl pyrophosphate gave only
26% of 3-prenylated indoles,3a electrophilic allylations of
indoles with allyl bromides in the presence of 1.2 equiv of
zinc triflate, tetrabutylammonium iodide (1 equiv), and
Hu¨nig’s base (2.2 equiv) in toluene have been reported to
give 30-69% of 3-allylated products.3b Transition-metal-
catalyzed allylations at the 3-position have been performed
with Mo(II),4a Ni(II),4b and Pd(0) or Pd(II) complexes,4c,d
and Pd-catalyzed allylations of 3-substituted indoles have
also been used for the enantioselective synthesis of 3,3-
disubstituted 3H-indoles.4e An alternative approach employs
zinc- or gallium-mediated Barbier reactions,5 where the
initially formed allylmetal compounds deprotonate indoles
to yield N-metalated indoles, which act as nucleophiles in
the succeeding SN2 reactions to give good yields of the
3-allylated indoles.6 In contrast, Li and Na salts of indoles
are predominantly alkylated and allylated at nitrogen.7 The
(4) (a) Malkov, A. V.; Davis, S. L.; Baxendale, I. R.; Mitchell, W. L.;
Kocˇovsky´, P. J. Org. Chem. 1999, 64, 2751-2764. (b) Wenkert, E.; Angell,
E. C.; Ferreira, V. F.; Michelotti, E. L.; Piettre, S. R.; Sheu, J.-H.; Ch.
Swindell, C. S. J. Org. Chem. 1986, 51, 2343-2351. (c) Bandini, M.;
Melloni, A.; Umani-Ronchi, A. Org. Lett. 2004, 6, 3199-3202. (d) Kimura,
M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127,
4592-4593. (e) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128,
6314-6315.
(5) (a) Yadav, J. S.; Reddy, B. V. S.; Reddy, P. M.; Srinivas, C.
Tetrahedron Lett. 2002, 43, 5185-5187. (b) Prajapati, D.; Gohain, M.;
Gogoi, B. J. Tetrahedron Lett. 2006, 47, 3535-3539.
(6) For reactions of indolylmagnesium salts with allyl halides, see also:
(a) Bodwell, G. J.; Li, J. Org. Lett. 2002, 4, 127-130. (b) Mirand, C.; Do¨e´
de Maindreville, M.; Le´vy, J. Tetrahedron Lett. 1985, 26, 3985-3988.
(7) (a) Bocchi, V.; Casnati, G.; Dossena, A.; Villani, F. Synthesis 1976,
414-416. (b) Guida, W. C.; Mathre, D. J. J. Org. Chem. 1980, 45, 3172-
3176. (c) Bourak, M.; Gallo, R. Heterocycles 1990, 31, 447-457.
‡ Dedicated to Professor Rolf Gleiter on the occasion of his 70th birthday.
(1) (a) Sundberg, R. J. Indoles; Academic Press: San Diego, 1996. (b)
Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York,
1970. (c) Jones, R. A. In ComprehensiVe Heterocyclic Chemistry; Pergamon
Press: Oxford, 1984; Vol. 4, Chapter 3.05. (d) Katritzky, A. R.; Taylor, R.
AdV. Heterocycl. Chem. 1990, 47, 87-137. (e) Black, D. S. C. In
ComprehensiVe Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W.,
Scriven, E. F. V., Bird, C. W., Eds.; Pergamon: Oxford, 1996; Chapter
2.02.
(2) (a) Yamamoto, H. In Lewis Acids in Organic Synthesis; Wiley-
VCH: Weinheim, 2000. (b) Bandini, M.; Melloni, A.; Tommasi, S.; Umani-
Ronchi, A. Synlett 2005, 1199-1222.
(3) (a) Araki, S.; Manabe, S.; Butsugan, Y. Bull. Chem. Soc. Jpn. 1984,
57, 1433-1434. (b) Zhu, X.; Ganesan, A. J. Org. Chem. 2002, 67, 2705-
2708.
10.1021/ol0618555 CCC: $33.50
© 2006 American Chemical Society
Published on Web 09/22/2006