1
acetylation with AcCl (neat) in 85% yield. In the H NMR
Preparation of 9-â-D-glucosyloxycamptothecin 2
spectrum, the acetyl methyl protons were observed at δ 2.16.
Condensation of the two components 6 and 8 in 5% AcOH–
MeOH under reflux gave the camptothecin skeleton 3 in 58%
yield. The synthetic compound 3 was identical with the penta-
A mixture of 3 (4.7 mg, 0.006 mmol) and K2CO3 (8.7 mg, 0.063
mmol) in dry MeOH (3 cm3) was stirred at rt under argon for 2
h. The reaction mixture was subjected to Amberlite IR-120B
eluted with H2O. The water layer was extracted with BunOH
and the organic layer was washed with water, then evaporated.
The residue was purified by SiO2 column chromatography (25%
MeOH–CHCl3) to give 2 (2.7 mg, 80%). m/z (FAB, NBA)
527 (MHϩ) [HRMS (FAB): found MHϩ, 527.1660. Calc. for
C26H27N2O10, 527.1666]; λmax(MeOH)/nm 372 (sh), 359, 319,
304, 262; δH(400 MHz; [2H6]DMSO) 9.01 (1 H, s, H-7), 7.81 (1
H, d, J 7.9, H-12), 7.77 (1 H, dd, J 7.9 and 7.9, H-11), 7.36 (1 H,
d, J 7.9, H-10), 7.34 (1 H, s, H-14), 6.53 (1 H, s, 20-OH), 5.42 (2
H, s, H-17), 5.34 (1 H, d, J 19.8, H-5), 5.26 (1 H, d, J 19.8, H-5),
5.11 (1 H, d, J 7.8, H-1Ј), 4.62 (1 H, dd, J 6.1 and 5.9, 6Ј-OH),
3.73 (1 H, m, H-6Ј), 3.44 (1 H, m, H-6Ј), 3.44 (3 H, m, H-3Ј–5Ј‡),
3.27 (1 H, m, H-2Ј‡), 1.86 (2 H, m, H-19) and 0.87 (3 H, m,
H-18); δC(125 MHz; [2H6]DMSO) 152.8 (C-2), 145.5 (C-3), 50.4
(C-5), 129.2 (C-6), 126.5 (C-7), 120.4 (C-8), 153.0 (C-9), 96.8
(C-10), 130.5 (C-11), 122.4 (C-12), 148.6 (C-13), 110.2 (C-14),
150.0 (C-15), 119.1 (C-16), 65.3 (C-17), 7.8 (C-18), 30.3 (C-19),
72.4 (C-20), 172.5 (C-21), 156.9 (C-22), 101.1 (C-1Ј), 69.7
(C-2Ј)‡, 73.4 (C-3Ј)‡, 76.4 (C-4Ј)‡, 77.3 (C-5Ј)‡ and 60.7
(C-6Ј); CD (c 0.247 mmol dmϪ3, MeOH, 25 ЊC); ∆ε/dm3 molϪ1
cmϪ1 (λ/nm) 0 (389), Ϫ0.42 (354), 0 (318), ϩ0.31 (276), ϩ0.26
(266), ϩ3.44 (234), 0 (216).
1
acetate derived from the natural glucoside (TLC, UV, IR, H
and 13C NMR, CD and mass spectra).2f Thus the structure of
the new compound including the absolute configuration of
the sugar moiety and the C-20 position was established.
Deacetylation of 3 with K2CO3 (10 equiv.) in MeOH at room
temperature gave 9-β--glucosyloxycamptothecin 2 in 80%
yield.
In conclusion, 9-β--glucosyloxycamptothecin, the second
example of naturally occurring camptothecinoid glucosides,
was synthesized in a chiral manner and its absolute configur-
ation was established.
Experimental
Selected data for the A-ring segment 6
Yellow needles, mp 135 ЊC (AcOEt) (Found: C, 53.63; H, 5.51;
N, 3.06. C21H25NO11 requires C, 53.96; H, 5.39; N, 3.00%);
δH(400 MHz; CDCl3) 10.26 (1 H, s, CHO), 7.20 (1 H, t, J 8.2†,
aromatic-H), 6.40 (2 H, br s, NH2), 6.33 (1 H, d, J 8.2, aromatic-
H), 6.24 (1 H, d, J 8.2, aromatic-H), 5.15 (1 H, d, J 7.3, H-1Ј).
Selected data for the CDE-ring component 8
(Found: C, 58.85; H, 5.25; N, 4.79. C15H15NO6 requires C,
59.01; H, 4.95; N, 4.59%); δH(500 MHz; CDCl3) 6.76 (1 H, s,
aromatic-H), 2.16 (3 H, s, COCH3), 0.92 (3 H, dd, J 7.4 and 7.4,
CH3); CD (c 0.328 mmol dmϪ3, MeOH, 25 ЊC) ∆ε/dm3 molϪ1
cmϪ1 (λ/nm) 0 (377), Ϫ0.42 (360), 0 (335), ϩ0.25 (305), ϩ0.14
(287), ϩ2.78 (262), ϩ2.05 (245), ϩ7.90 (233).
Acknowledgements
Our thanks are due to the Ministry of Education, Science,
Sports and Culture, Japan, for a Grant-in-Aid for Scientific
Research (No. 08457578).
‡ Interchangeable.
Preparation of 9-â-D-glucosyloxycamptothecin tetraacetate 3
AcOH (0.2 cm3) was added to a mixture of the A-ring segment
6 (219 mg, 0.441 mmol) and the CDE-ring component 8 (19
mg, 0.063 mmol) in dry MeOH (4 cm3) and the mixture was
refluxed under argon for 11.5 h. The reaction mixture was
diluted with CHCl3, washed with sat. aqueous NaHCO3 and
then with water, dried (MgSO4) and evaporated. The residue
was purified by MPLC (SiO2, 20% AcOEt–CHCl3) to afford the
camptothecin derivative 3 (26.5 mg, 58%). [HRMS (FAB):
found MHϩ, 737.2167. Calc. for C36H37N2O15, 737.2194];
λmax(MeOH)/nm 371 (sh), 356, 316, 299, 260; νmax/cmϪ1 1752,
1235, 1053; δH(400 MHz; CDCl3) 8.68 (1 H, s, H-7), 7.94 (1 H,
d, J 8.5, H-12), 7.73 (1 H, dd, J 8.5 and 7.9, H-11), 7.21 (1 H, s,
H-14), 7.18 (1 H, d, J 7.9, H-10), 5.68 (1 H, d, J 17.3, H-17),
5.40 (1 H, d, J 17.3, H-17), 5.33 (1 H, d, J 19.8, H-5), 5.26 (1 H,
d, J 19.8, H-5), 5.34 (1 H, d, J 7.8, H-1Ј), 2.28 (1 H, dd, J 13.9
and 7.5, H-19), 2.22 (3 H, s, COMe), 2.14 (1 H, dd, J 13.9 and
7.5, H-19), 2.09, 2.08, 2.07 and 2.06 (each 3 H, s, 4 × COMe)
and 0.98 (3 H, dd, J 7.5 and 7.5, H3-18); δC(125 MHz; CDCl3)
153.0 (C-2), 146.0 (C-3), 50.2 (C-5), 128.5 (C-6), 126.0 (C-7),
121.1 (C-8), 152.2 (C-9), 110.2 (C-10), 130.2 (C-11), 124.3
(C-12), 149.4 (C-13), 96.2 (C-14), 145.8 (C-15), 120.6 (C-16),
67.1 (C-17), 7.5 (C-18), 31.8 (C-19), 75.9 (C-20), 167.5 (C-21),
157.3 (C-22), 99.1 (C-1Ј), 71.0 (C-2Ј), 72.3 (C-3Ј), 68.2 (C-4Ј),
72.3 (C-5Ј), 61.7 (C-6Ј); CD (c 0.054 mmol dmϪ3, MeOH,
25 ЊC) ∆ε/dm3 molϪ1 cmϪ1 (λ/nm) 0 (396), Ϫ1.79 (345), 0 (306),
ϩ0.63 (283), 0 (269), Ϫ1.04 (263), 0 (253), ϩ4.55 (232), ϩ1.58
(217), 0 (210).
References
1 (a) C. R. Hutchinson, Tetrahedron, 1981, 37, 1047; (b) J.-C. Cai and
C. R. Hutchinson, in The Alkaloids, ed. A. Brossi, Academic Press,
New York, 1983, vol. 21, p. 101; (c) M. E. Wall and M. C. Wani, in The
Monoterpenoid Indole Alkaloids, ed. J. E. Saxton, Wiley, London,
1994, ch. 13, p. 689.
2 (a) N. Aimi, M. Nishimura, A. Miwa, H. Hoshino, S. Sakai and
J. Haginiwa, Tetrahedron Lett., 1989, 30, 4991; (b) N. Aimi,
H. Hoshino, M. Nishimura, S. Sakai and J. Haginiwa, Tetrahedron
Lett., 1990, 31, 5169; (c) N. Aimi, M. Ueno, H. Hoshino and S. Sakai,
Tetrahedron Lett., 1992, 33, 5403; (d) M. Kitajima, S. Masumoto,
H. Takayama and N. Aimi, Tetrahedron Lett., 1997, 38, 4255; (e)
M. Kitajima, U. Fischer, M. Nakamura, M. Ohsawa, M. Ueno,
H. Takayama, M. Unger, J. Stöckigt and N. Aimi, Phytochemistry, in
press. ( f ) M. Kitajima, M. Nakamura, H. Takayama, K. Saito,
J. Stöckigt and N. Aimi, Tetrahedron Lett., 1997, 38, 8997.
3 Shanghai No. 5 and No. 12 Pharmaceutical Plant, Shanghai Institute
of Pharmaceutical Industrial Research and Shanghai Institute of
Materia Medica, Sci. Sin. Ser. B, 1978, 21, 87; (b) M. C. Wani, P. E.
Ronman, J. T. Lindley and M. E. Wall, J. Med. Chem., 1980, 23, 554;
(c) A. Ejima, H. Terasawa, M. Sugimori and H. Tagawa, J. Chem.
Soc., Perkin Trans. 1, 1990, 27.
4 J. N. Ashley, W. H. Perkin and R. Robinson, J. Chem. Soc., 1930, 382.
5 T. Yaegashi, S. Sawada, S. Okajima and T. Miyasaka, Jpn. Kokai
Tokkyo Koho JapP 63 238 098.
Paper 7/08263K
Received 17th November 1997
Accepted 10th December 1997
† J Values are given in Hz.
390
J. Chem. Soc., Perkin Trans. 1, 1998