Please donot adjust the margins
30
20
10
0
(c)
(a) 30
20
100
80
60
40
20
0
(b)
100
80
60
40
20
0
(d)
hPEA101-BP
hPEA211-BP
MGA-BP/TEOA
2959
hPEA101-TX
hPEA211-TX
MGA-TX/TEOA
I2959
hPEA101-BP
hPEA211-BP
MGA-BP/TEOA
2959
hPEA101-TX
hPEA211-TX
MGA-TX/TEOA
2959
10
0
0
30 60 90 120 150 180
Time (s)
0
30 60 90 120 150 180
Time (s)
0
30 60 90 120 150 180
Time (s)
0
30 60 90 120 150 180
Time (s)
Fig. 2 (a) (c) Photo-DSC profiles and (b) (d) conversion vs. time for photopolymerization of AM (30 wt%) for hPEA101-TX, hPEA211-TX, MGA-TX/TEOA,
hPEA101-BP, hPEA211-BP, MGA-BP/TEOA and I2959 in aqueous solution at 25 oC by UV light with an intensity of 50 mW/cm2. ([PI] = 0.05 mol/L in terms
of TX or BP moiety).
(b)
100
80
60
40
20
0
(a)
50
40
30
20
10
0
hPEA101-TX
hPEA211-TX
hPEA110-TX
MGA-TX/TEOA
ITX/TEOA
hPEA101-TX
hPEA211-TX
hPEA110-TX
MGA-TX/TEOA
ITX/TEOA
0
30
60
Time (s)
90
120
0
30 60 90 120 150 180
Time (s)
Fig. 3 (a) Photo-DSC profiles (b) conversion vs time for photopolymerization of HDDA for hPEA101-TX, hPEA211-TX, hPEA110-TX, MGA-TX/TEOA and
ITX/TEOA at 25 oC by UV light with an intensity of 50 mW/cm2. ([PI] = 0.05 mol/L in terms of TX or BP moiety)
Many problems in photo-cured materials are caused by the migration of the photoinitiator to surface. The mass fraction of the
migrated TX moieties in the TMPTA matrix for ITX/TEOA MGA-TX/TEOA and hPEA211-TX is 47.2%, 37.6% and 11.5%,
respectively (Fig. S11 in Supporting information). It is obvious that the migration of hPEA211-TX is smaller than MGA-TX/TEOA
and ITX/TEOA, because the PEG chain of hPEA endows photoinitiators with good compatibility with acrylate monomers. Moreover,
the lower migration can also be ascribed to the high molecular weight of hPEA-TX.
In summary, the hyperbranched poly (ether amine) (hPEA) can be used as novel backbone for development of the one-component
polymeric type-II photoinitiator due to its flexible, amphiphilic and hyperbranched structure containing amino groups as coinitiator. A
series of amphiphilic hyperbranched polymeric photoinitiators (hPEA-TXs and hPEA-BPs) were developed by introducing
thioxanthone (TX) and benzophenone (BP) moieties into the periphery of hPEA through epoxy/amine click reaction. The resulting
hPEA101-TX, hPEA211-TX, hPEA101-BP and hPEA211-BP could dissolve very well not only in many organic systems including
acrylate monomers, but also in water with high solubility of 10 wt%. Both hPEA-TX and hPEA-BP not only have high efficiency in
initiating the photopolymerization of water-soluble monomer AM, but also are all perfectly effective to initiate the
photopolymerization of oil soluble monomers HDDA, TMPTA and PEPPT, especially in the case of multifunctional monomers
TMPTA and PEPPT. These advantages of hPEA as backbone will make hPEA-TX and hPEA-BP find enormous commercial potential
applications in fields such as the photo-curing ink, 3D printing, photo-cured food package and photo-curing coating.
Acknowledgments
The authors thank the National Nature Science Foundation of China (Nos. 21522403, 51373098), Education Commission of
Shanghai Municipal Government (No.15SG13) and IFPM2016B002 of Shanghai Jiao Tong University & Affiliated Sixth People's
Hospital South Campus for their financial support.
References
[1] Y. Yagci, S. Jockusch, N.J. Turro, Macromolecules 43 (2010) 6245-6260.
[2] H. Tar, D. Sevinc Esen, M. Aydin, et al., Macromolecules 46 (2013) 3266-3272.
[3] A.A. Pawar, G. Saada, I. Cooperstein, et al., Sci. Adv. 2 (2016) e1501381.
[4] J.Y. Yao, H.H. Hou, X.D. Ma, et al., Chinese Chem. Lett. 28 (2017) 6-12.
[5] N.f. Yang, J. Cao, J. Zhang, L.w. Yang, Chinese J. Polym. Sci. 27 (2009) 873-877.
[6] T.N. Eren, N. Okte, F. Morlet-Savary, et al., J. Polym. Sci. Pol. Chem. 54 (2016) 3370-3378.
[7] F. Karasu, N. Arsu, S. Jockusch, N.J. Turro, J. Org. Chem. 78 (2013) 9161-9165.
[8] P. Xiao, J. Zhang, F. Dumur, et al., Prog. Polym. Sci. 41 (2015) 32-66.
[9] N. Karaca, D.K. Balta, N. Ocal, N. Arsu, J. Polym. Sci. Pol. Chem. 54 (2016) 1012-1019.
[10] Q. Wu, X. Wang, Y. Xiong, J. Yang, H. Tang, RSC Adv. 6 (2016) 66098-66107.
[11] C. Decker, Macromol. Rapid Comm. 23 (2002) 1067-1093.
[12] R. Liu, Y. Lin, F. Hu, et al., Envir. Sci. Technol. 50 (2016) 97-104.
[13] S. Dadashi-Silab, H. Bildirir, R. Dawson, A. Thomas, Y. Yagci, Macromolecules 47 (2014) 4607-4614.
[14] J. Yang, R. Tang, S. Shi, J. Nie, Photoch. Photobio. Sci. 12 (2013) 923-929.
[15] Y. Wang, P. Xiao, G.Q. Wu, S.Q. Shi, J. Nie, Chinese Chem. Lett. 18 (2007) 977-980.
[16] M. Aydin, N. Arsu, Y. Yagci, Macromol. Rapid Comm. 24 (2003) 718-723.
[17] X. Ye, J. Wang, Y. Xu, et al., J. Appl. Polym. Sci. 131 (2014) 41173.
[18] J. Wei, F. Liu, Macromolecules 42 (2009) 5486-5491.
[19] Y. Xie, H. Huang, J. Appl. Polym. Sci. 133 (2016) 43910.
[20] J. Wei, H. Wang, X. Jiang, J. Yin, Macromolecules 40 (2007) 2344-2351.
[21] G. Temel, N. Arsu, Y. Yagci, Polym. Bull. 57 (2006) 51-56.
[22] B. Gacal, H. Akat, D.K. Balta, N. Arsu, Y. Yagci, Macromolecules 41 (2008) 2401-2405.
[23] C. Valderas, S. Bertolotti, C.M. Previtali, M.V. Encinas, J. Polym. Sci. Pol. Chem. 40 (2002) 2888-2893.
[24] T. Corrales, F. Catalina, C. Peinado, et al., Polymer 43 (2002) 4591-4597.