C. G. Lee et al. / Tetrahedron Letters 45 (2004) 7409–7413
7413
Compound 8a: 1H NMR (CDCl3) d 4.08 (s, 2H), 7.46–7.58
(m, 2H), 7.65–7.78 (m, 3H), 8.24 (dd, J = 8.4 and 1.2Hz,
1H), 8.43 (d, J = 7.5Hz, 1H), 8.69 (dd, J = 8.4 and 1.2Hz,
1H), 9.14 (s, 1H); 13C NMR (CDCl3) d 35.72, 123.65,
124.43, 124.64, 125.47, 126.83, 127.38, 128.22, 128.43,
130.51, 135.85, 140.70, 144.47, 144.97, 147.63, 147.91; MS
(MALDI-TOF) 217.4 (M+).
1H); 13C NMR (CDCl3) d 39.74, 41.09, 50.66, 53.99,
112.78, 119.35, 123.35, 126.34, 126.42, 127.78, 127.90,
128.98, 135.44, 136.02, 149.16, 156.78, 208.37; EI-MS
(70eV) m/z (rel. intensity) 144 (29), 178 (11), 204 (14), 220
(17), 232 (29), 249 (M+, 100).
1
Compound 8b: H NMR (CDCl3) d 2.66 (s, 3H), 4.06 (s,
2H), 7.45–7.59 (m, 3H), 7.70 (d, J = 6.0Hz, 1H), 8.12 (d,
J = 6.0Hz, 1H), 8.42–8.44 (m, 2H), 9.06 (s, 1H); 13C NMR
(CDCl3) d 22.34, 35.92, 122.90, 124.64, 124.89, 125.66,
127.52, 128.28, 130.38, 130.87, 136.11, 136.98, 141.09,
143.98, 145.17, 146.71, 146.95; EI-MS (70eV) m/z (rel.
intensity) 115 (5), 189 (5), 202 (11), 216 (17), 231 (M+,
100).
The other experiments were carried out analogously and
the spectroscopic data of the prepared compounds are as
follows.
Compound 7b: IR (neat) 3344, 1712cmꢀ1 1H NMR
;
(CDCl3) d 2.32 (s, 3H), 3.17–3.22 (m, 1H), 3.26–3.31 (m,
1H), 3.52 (br s, 1H), 3.74 (dd, J = 11.1 and 2.7Hz, 1H),
4.60 (d, J = 7.8Hz, 1H), 6.44 (d, J = 7.8Hz, 1H), 6.83 (dd,
J = 7.8 and 1.5Hz, 1H), 7.31–7.36 (m, 2H), 7.53–7.63 (m,
2H), 7.73 (d, J = 7.5Hz, 1H); 13C NMR (CDCl3) d 20.71,
40.29, 44.68, 50.26, 115.83, 123.24, 124.45, 126.26, 127.70,
127.86, 128.88, 129.60, 135.26, 135.70, 144.12, 156.55,
208.02; EI-MS (70eV) m/z (rel. intensity) 144 (27), 234
(24), 248 (64), 249 (M+, 100).
Compound 8c: 1H NMR (CDCl3) d 4.09 (s, 2H), 7.48–7.61
(m, 2H), 7.67–7.74 (m, 2H), 8.17 (d, J = 9.0Hz, 1H), 8.37
(d, J = 7.2Hz, 1H), 8.65 (d, J = 2.4Hz, 1H), 9.12 (s, 1H);
13C NMR (CDCl3) d 35.73, 122.80, 124.19, 125.10, 125.56,
127.56, 128.55, 129.36, 132.02, 132.74, 136.69, 140.09,
143.80, 144.85, 146.30, 147.79; EI-MS (70eV) m/z (rel.
intensity) 94 (10), 125 (9), 189 (20), 216 (96), 251 (M+,
100).
Compound 7c: IR (neat) 3340, 1712cmꢀ1 1H NMR
;
1
(CDCl3) d 3.18–3.31 (m, 1H), 3.26–3.32 (m, 1H), 3.68 (br
s, 1H), 3.76 (dd, J = 11.1 and 2.7Hz, 1H), 4.58 (d,
J = 8.1Hz, 1H), 6.46 (d, J = 8.4Hz, 1H), 6.96 (dd, J = 8.1
and 2.1Hz, 1H), 7.34–7.40 (m, 1H), 7.46 (dd, J = 2.4 and
0.6Hz, 1H), 7.59–7.61 (m, 2H), 7.74 (d, J = 7.5Hz, 1H);
13C NMR (CDCl3) d 40.09, 44.19, 49.96, 117.01, 123.42,
123.96, 125.94, 126.19, 127.15, 128.04, 128.80, 135.47,
135.64, 145.13, 155.69, 207.18; EI-MS (70eV) m/z (rel.
intensity) 164 (32), 204 (26), 233 (24), 251 (21), 269 (M+,
100).
Compound 8d: H NMR (CDCl3) d 2.57 (s, 3H), 4.03 (s,
2H), 7.31 (dd, J = 7.5 and 0.6Hz, 1H), 7.59 (d, J = 7.5Hz,
1H), 7.66–7.78 (m, 2H), 8.22–8.25 (m, 2H), 8.71 (dd,
J = 8.4 and 1.2Hz, 1H), 9.11 (s, 1H); 13C NMR (CDCl3) d
21.84, 35.35, 123.75, 124.71, 125.06, 125.10, 126.74,
128.39, 129.24, 130.50, 136.28, 137.05, 140.94, 142.13,
144.53, 147.67, 147.92; EI-MS (70eV) m/z (rel. intensity)
101 (5), 189 (6), 202 (15), 216 (23), 231 (M+, 100).
Compound 8e: IR (neat) 2924, 1562, 1508cmꢀ1; 1H NMR
(CDCl3) d 4.05 (s, 2H), 7.43–7.80 (m, 4H), 8.24 (d,
J = 8.1Hz, 1H), 8.37 (s, 1H), 8.58 (d, J = 8.1Hz, 1H), 9.12
(s, 1H); 13C NMR (CDCl3) d 35.60, 123.52, 124.57, 124.73,
126.54, 127.46, 128.40, 128.93, 130.84, 133.58, 136.68,
142.52, 143.27, 143.54, 147.78, 148.11.
Compound 7d: IR (neat) 3363, 1709cmꢀ1 1H NMR
;
(CDCl3) d 2.36 (s, 3H), 3.19–3.24 (m, 1H), 3.28–3.34 (m,
1H), 3.62 (br s, 1H), 3.74 (dd, J = 10.8 and 2.7Hz, 1H),
4.61 (d, J = 8.1Hz, 1H), 6.52 (dd, J = 7.8 and 1.2Hz, 1H),
6.84 (td, J = 7.2 and 1.2Hz, 1H), 7.01 (td, J = 7.8 and
1.5Hz, 1H), 7.37 (dd, J = 8.1 and 1.2Hz, 1H), 7.47–7.53
(m, 3H); 13C NMR (CDCl3) d 20.98, 39.92, 44.47, 50.64,
115.89, 119.60, 123.18, 124.75, 125.93, 127.16, 129.17,
135.82, 136.56, 137.78, 146.49, 154.02, 207.87; EI-MS
(70eV) m/z (rel. intensity) 130 (31), 204 (17), 220 (17), 232
(39), 249 (M+, 100).
10. For the related isomerization phenomena, see: (a) Kim, J.
N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron
Lett. 2001, 42, 8341, and further references cited therein;
(b) Diaba, F.; Houerou, C. L.; Grignon-Dubois, M.;
Gerval, P. J. Org. Chem. 2000, 65, 907; (c) Diaba, F.;
Lewis, I.; Grignon-Dubois, M.; Navarre, S. J. Org. Chem.
1996, 61, 4830; (d) Carelli, V.; Liberatore, F.; Tortorella,
S. Gazz. Chim. Ital. 1983, 113, 569; (e) Minter, D. E.;
Stotter, P. L. J. Org. Chem. 1981, 46, 3965; (f) Fowler, F.
W. J. Org. Chem. 1972, 37, 1321; (g) Comins, D. L.;
Abdullah, A. H. J. Org. Chem. 1982, 47, 4315; (h)
Grignon-Dubois, M.; Diaba, F.; Grellier-Marly, M.-C.
Synthesis 1994, 800.
11. For the intramolecular aromatic Mannich type reaction,
see: Overman, L. E.; Ricca, D. J. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 2, pp 1007–1046.
12. As already published,2,7 the SN20 reaction of the Baylis–
Hillman acetate and nucleophiles including aniline
afforded the E-form product as the major component.
The corresponding Z-form was generated in about 5–20%
depending on the substrates. Thus, we scaled up the
reaction and obtained the minor component 3b-Z.
Compound 7e: IR (neat) 3351, 1709cmꢀ1 1H NMR
;
(CDCl3) d 3.20–3.31 (m, 2H), 3.63 (br s, 1H), 3.73 (dd,
J = 10.8 and 2.4Hz, 1H), 4.60 (d, J = 7.8Hz, 1H), 6.52
(dd, J = 7.8 and 1.2Hz, 1H), 6.85 (td, J = 7.8 and 1.2Hz,
1H), 7.02 (td, J = 7.8 and 1.2Hz, 1H), 7.43–7.53 (m, 3H),
7.66 (d, J = 2.1Hz, 1H); 13C NMR (CDCl3) d 39.88, 44.44,
50.74, 115.98, 119.75, 122.89, 123.89, 127.42, 127.54,
129.00, 134.15, 135.18, 137.02, 146.51, 154.56, 206.58;
EI-MS (70eV) m/z (rel. intensity) 130 (33), 204 (30), 233
(20), 252 (36), 269 (M+, 100).
1
Compound 7f: IR (neat) 1712cmꢀ1; H NMR (CDCl3) d
2.61 (s, 3H), 3.02 (dd, J = 11.1 and 5.1Hz, 1H), 3.09–3.15
(m, 1H), 3.51 (dd, J = 11.1 and 2.1Hz, 1H), 4.55 (d,
J = 8.1Hz, 1H), 6.53 (dd, J = 8.1 and 0.9Hz, 1H), 6.81 (td,
J = 7.5 and 1.2Hz, 1H), 7.05 (td, J = 7.8 and 1.5Hz, 1H),
7.21–7.27 (m, 1H), 7.40–7.50 (m, 3H), 7.64 (d, J = 7.8Hz,