520
E. Forró et al. / Tetrahedron: Asymmetry 9 (1998) 513–520
2×CH2), 4.45 (1H, m, CHOCOCH3), 7.2–7.4 (10H, m, 10×CH). Analysis: calculated for C23H29NO2:
C, 78.60; H, 8.32; N, 3.98; found: C, 78.66; H, 8.88; N, 3.93.
F2: Analysis: calculated for C21H27NO: C, 81.51; H, 8.79; N, 4.53; found: C, 81.60; H, 9.23; N, 4.51.
F3 (Crystalline product, mp 132–134°C, ee 99%). Analysis: calculated for C21H27NO: C, 81.51; H,
8.79; N, 4.53; found: C, 81.58; H, 9.11; N, 4.49.
1H NMR (400 MHz, CDCl3) δ (ppm): 0.7–2.0 (9H, m, 4×CH2 and remaining CH), 2.2–2.6 (2H, dd,
CH2N), 3.0 (1H, m, CHOH), 3.1–4.2 (4H, d, 2×CH2), 6.9 (1H, brs, OH), 7.2–7.4 (10H, m, 10×CH).
Acknowledgements
One of us (E. F.) is grateful for a grant from the Centre for International Mobility (CIMO). Support
from MKM (FKFP 0910/1997) Hungary is also gratefully acknowledged.
References
1. Hayashi, Y.; Rohde, J. J.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 5502.
2. Eliel, E. L.; He, X. J. Org. Chem. 1990, 55, 2114.
3. Maestro, A.; Astorga, C.; Gotor, V. Tetrahedron: Asymmetry 1997, 8, 3153.
4. Fülöp, F.; Bernáth, G.; Pihlaja, K. Adv. Heterocyclic Chem. 1998, 69, 349.
5. Nemes, P.; Kajtár, J.; Kajtár, M.; Kárpáti, E.; Nádor, K. Arzneim.-Forsch./Drug Res. 1988, 38, 1081.
6. Gregan, F.; Racanska, E.; Remko, M. Pharmazie 1995, 50, 772.
7. Gregan, F.; Kettmann, V.; Novomesky, P.; Sivy, J. Collect. Czech. Chem. Commun. 1994, 59, 675.
8. Bradlerova, A.; Pronayova, N.; Misikova, E.; Durinda, J. Collect. Czech. Chem. Commun. 1990, 55, 1854.
9. Polivka, Z.; Holubek, J.; Svatek, E.; Metys, J.; Protiva, M. Collect. Czech. Chem. Commun. 1985, 50, 1078.
10. Traynelis, V. J.; Dadura, J. G. J. Org. Chem. 1961, 26, 1813.
11. Möhrle, H.; Baumann, H. Arch. Pharm. 1966, 299, 355.
12. Möhrle, H.; Baumann, H. Arch. Pharm. 1968, 301, 219.
13. Ratonis, R.; Combes, G. Bull. Soc. Chim. France 1959, 576.
14. Risch, N.; Esser, A. Liebigs Ann. Chem. 1992, 233.
15. Forró, E.; Lundell, K.; Fülöp, F.; Kanerva, L. T. Tetrahedron: Asymmetry 1997, 8, 3095.
16. Kanerva, L. T.; Sundholm, O. Acta Chem. Scand. 1993, 47, 823.
17. Kanerva, L. T.; Rahiala, K.; Vänttinen, E. J. Chem. Soc., Perkin Trans. 1 1992, 1759.
18. Lundell, K.; Kanerva, L. T. Tetrahedron: Asymmetry 1995, 6, 2281.
19. Kanerva, L. T.; Rahiala, K.; Sundholm, O. Biocatalysis, 1994, 10, 169.
20. Lundell, K.; Raijola, T.; Kanerva, L. T. Enzyme Microb. Technol. 1997, in press.
21. Sundholm, O.; Kanerva, L. T. Acta Chim. Hung. — Models in Chemistry, 1997, in press.
22. According to the model, a lipase distinguishes the two enantiomers on the basis of the size of the substituents Rlarge and
Rsmall at the alcoholic stereocentre [RsmallCH(OH)Rlarge] in such a way that the more reactive enantiomer bears the (R)
absolute configuration when the Cahn–Ingold–Prelog priority of the group Rlarge is higher than that of the group Rsmall and
H is behind the plain. Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia, L. A. J. Org. Chem. 1991, 56, 2656.
Cygler, M.; Grochulski, P.; Kazlauskas, R. J.; Schrag, J. D.; Bouthillier, F.; Rubin, B.; Serreqi, A. N.; Gupta, A. K. J. Am.
Chem. Soc. 1994, 116, 3180.
23. Lemke, K.; Lemke, M.; Theil, F. J. Org. Chem. 1997, 62, 6268.
24. E={ln[(1−ees)/(1+ees/eep)]}/{ln[(1+ees)/(1+ees/eep)]} where ees and eep refer to the enantiomeric excess of the unreacted
substrate and product fractions, respectively, and c=eeS/(eeS+eeP); Rakels, J. L. L.; Straathof, J. J.; Heijnen, J. J. Enzyme
Microb. Technol. 1993, 15, 1051.
25. Kanerva, L. T.; Csomós, P.; Sundholm, O.; Bernáth, G.; Fülöp, F. Tetrahedron: Asymmetry 1996, 7, 1705.
26. Holmberg, E.; Hult, K. Biotechnol. Lett. 1991, 13, 323.
27. Fülöp, F.; Huber, I.; Bernáth, G.; Hönig, H.; Seufer-Wasserthal P. Synthesis 1991, 43.