Organic & Biomolecular Chemistry
Communication
S. Pisiewicz, K. Kiersch, D. Michalik, F. Gallou, K. Junge
and M. Beller, Angew. Chem., Int. Ed., 2015, 54, 12389.
4 (a) F. Spindler, Handbook of Homogeneous Hydrogenation,
Wiley-VCH, Weinheim, 2007; (b) T. Nugent and M. El-
Shazly, Adv. Synth. Catal., 2010, 352, 753; (c) M. Ruping,
E. Sugiono and F. R. Schoepke, Synlett, 2010, 852;
(d) S. Fleischer, S. Werkmeister, S. Zhou, K. Junge and
M. Beller, Chem. – Eur. J., 2012, 18, 9005; S. Fleischer,
S. Zhou, S. Werkmeister, K. Junge and M. Beller, Chem. –
Eur. J., 2013, 19, 4997; (e) D. S. Mérel, M. Elie, J. F. Lohier,
S. Gaillard and J. L. Renaud, ChemCatChem, 2013, 5, 2939;
(f) S. Chakraborty, W. W. Brennessel and W. D. Jones,
J. Am. Chem. Soc., 2014, 136, 8564.
5 (a) C. Zhu, K. Saito, M. Yamanaka and T. Akiyama, Acc.
Chem. Res., 2015, 48, 388; (b) B. Xiong, Y. Li, W. Lv, Z. Tan,
H. Jiang and M. Zhang, Org. Lett., 2015, 17, 4054;
(c) S. Zhou, S. Fleischer, K. Junge, S. Das, D. Addis and
M. Beller, Angew. Chem., Int. Ed., 2010, 49, 8121;
(d) A. A. Mikhailine, M. I. Maishan and R. H. Morris, Org.
Lett., 2012, 14, 4638; (e) H.-J. Pan, T. W. Ng and Y. Zhao,
Org. Biomol. Chem., 2016, 14, 5490.
Scheme 1 Hydrosilylation of ketone-derived ketimine 10.
Finally, imine substrates comprising heterocycles were also
studied (8t–8w). Gratifyingly, both pyridine- and thiophene-
based imines were amenable to our optimized hydrosilylation
conditions and were converted to corresponding amine pro-
ducts in good to excellent yields (80–98%); in the case of thio-
phene-derived imine 8w, slightly extended reaction times were
necessary to afford good yields of the amine product.
To extend our methodology to ketimines, we attempted the
hydrosilylation of substrate 10 (Scheme 1). Disappointingly,
the ketimine proved to be a poor substrate for hydrosilylation
using catalyst 3. Moderate yield (42%) was only obtained after
increasing catalyst loading to 5 mol%.19
In summary, we have isolated a well-defined BIAN-based
iron complex (3) and shown it to be an efficient precatalyst
system for hydrosilylation of imines to secondary amines.
Further derivatization of the ligand and their use in reducing
more challenging substrates such as amides are in progress.
Details of the hydrosilylation mechanism are currently being
explored in our group.
6 (a) L. D. Field, B. A. Messerle and S. L. Rumble, Eur. J. Org.
Chem., 2005, 2881; (b) Y. Nishibayashi, I. Takei, S. Uemura
and M. Hidai, Organometallics, 1998, 17, 3420.
7 (a) H. Hashimoto, I. Aratani, C. Kabuto and M. Kira,
Organometallics, 2003, 22, 2199–2201; (b) C. Cheng and
M. Brookhart, J. Am. Chem. Soc., 2012, 134, 11304–11307.
8 (a) B. H. Lipshutz and H. Shimizu, Angew. Chem., Int. Ed.,
2004, 43, 2228–2230; (b) L. Wang, H. Sun and X. Li,
Eur. J. Inorg. Chem., 2015, 2732–2743; (c) I. Bauer and
H.-J. Knolker, Chem. Rev., 2015, 115, 3170–3387;
(d) A. Fürstner, ACS Cent. Sci., 2016, 2, 778–789.
Conflicts of interest
There are no conflicts to declare.
9 (a) B. M. Park, S. Mun and J. Yun, Adv. Synth. Catal., 2006,
348, 1029–1032; (b) A. Bezlada, M. Szewczyk and
J. Mlynarski, J. Org. Chem., 2016, 81, 336–342; (c) T. Ireland,
F. Fontanet and G. G. Tchao, Tetrahedron Lett., 2004, 45,
4383–4387.
Acknowledgements
The authors thank the National Science Foundation (Grant
CHE-1554906) for financial support.
10 L. C. M. Castro, J. B. Sortais and C. Darcel, Chem.
Commun., 2012, 48, 151.
11 M. Bhunia, P. K. Hota, G. Vijaykumar, D. Adhikari and
S. K. Mandal, Organometallics, 2016, 35, 2930.
12 (a) P. J. Chirik and K. Wieghardt, Science, 2010, 327, 794–
795; (b) P. J. Chirik, Inorg. Chem., 2011, 50, 9737–9740.
Notes and references
1 (a) R. C. Larock, Comprehensive Organic Transformations: a
Guide to Functional Group Preparation, Wiley-VHC, 13 (a) N. J. Hill, I. Vargas-Baca and A. H. Cowley, Dalton Trans.,
New York, 1989; (b) A. Ricci, Modern Amination Method,
Wiley-VCH, New York, 2000; (c) S. A. Lawrence, Amines:
Synthesis, Properties and Applications, Cambridge University
Press, Cambridge, 2004; (d) Amino Group Chemistry:
Synthesis to the Life Sciences, ed. A. Ricci, Wiley-VCH,
Weinheim, 2008.
2008, 240–253; (b) J. L. Rhinehart, N. E. Mitchell and
B. K. Long, ACS Catal., 2015, 4, 2501–2504; (c) C. Chen,
S. Luo and R. Jordan, J. Am. Chem. Soc., 2010, 132, 5273–
5284; (d) S. B. Williams, M. Leatherman, P. White and
M. Brookhart, J. Am. Chem. Soc., 2005, 127, 5132–5146;
(e) D. H. Camacho and Z. Guan, Chem. Commun., 2010,
7879–7893; (f) X. L. Sui, C. W. Hong, W. M. Pang and
C. L. Chen, Mater. Chem. Front., 2017, 1, 2487–2494.
2 (a) T. C. Nugent and M. El-Shazly, Adv. Synth. Catal., 2010,
352, 753; (b) V. L. Tararov and A. Borner, Synlett, 2005, 203.
3 (a) A. A. Nunez Magro, G. R. Eastham and D. J. Cole- 14 (a) I. L. Fedushkin, A. A. Skatova, V. A. Chudakova,
Hamilton, Chem. Commun., 2007, 3154; (b) S. Das,
B. Wendt, K. Möller, K. Junge and M. Beller, Angew. Chem.,
Int. Ed., 2012, 51, 1662; (c) S. Das, Y. Li, C. Bornschein,
V. K. Cherkasov, G. K. Fukin and M. A. Lopatin, Eur. J. Inorg.
Chem., 2004, 338–393; (b) M. M. Khusniyyarov, K. Harms,
O. Burghaus and J. Sundermeyer, Eur. J. Inorg. Chem., 2006,
This journal is © The Royal Society of Chemistry 2018
Org. Biomol. Chem., 2018, 16, 9368–9372 | 9371