2808
J . Org. Chem. 1998, 63, 2808-2809
Sch em e 1
Con n ectin g Dir ected Or th o Meta la tion a n d
Olefin Meta th esis Str a tegies. Ben zen e-F u sed
Mu ltir in g-Sized Oxygen Heter ocycles. F ir st
Syn th eses of Ra d u la n in A a n d Helia n a n e
Marijan Stefinovic and Victor Snieckus*
Guelph-Waterloo Center for Graduate Work in Chemistry,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Received February 20, 1998
Despite its profoundly consequential foundation in poly-
mer chemistry,1 the olefin metathesis reaction has only
recently enticed the attention of synthetic organic chemists,
stimulating methodological studies2 and total synthesis
realizations.3 While numerous medium-ring and macro ring
carbocyclic and heterocyclic ring-closing metathesis (RCM)
motifs have been reported,1b,d few benzannulated oxygen
heterocycle constructs have been explored. Herein, we
report the first cases of such RCM processes for various ring
sizes n ) 7-9, 12, and 14, demonstrating the synthetic link
between RCM and the regiospecific directed ortho metalation
(DoM) strategy,4 potentially part of a broader program in
the context of the conceptualization 1 f 2 f 3, and tailor
this combined methodology to the first syntheses of radu-
lanin A (13c) and (()-helianane (18), natural products
isolated from Radula variabilis5 and Haliclona fascigera6
respectively.
Scheme 1 summarizes exploration of ring-size effects on
the RCM of the systematic series 4a -c, prepared by DoM
routes,7 leading to annulated products 5a -c. In consonance
with observations by Grubbs,8 higher yields were observed
for n ) 3 than for n ) 6 and 8 due to greater conformational
restraint in the former system. Attempts to improve yields
by ethylene pretreatment2a were unsuccessful, and refluxing
the reaction mixtures brought only marginal improvement
in yields of 5b and 5c. In contrast, the biaryl systems 6a ,b
underwent cyclization at room temperature without the use
of ethylene to give macrocycle diethers 7a ,b in excellent yield
(Scheme 1). Precursor 8, which exhibits optional RCM
reaction modes, afforded only the benzoxepin 9, indicative
of an entropic preference for seven-membered ring forma-
tion. Grubbs’ ruthenium catalyst was used for all reactions;
Schrock catalyst, in contrast to serving beneficially for a
variety of reported cases,2d was ineffective in these RCM
reactions.
The combined DoM-RCM strategy, 1 f 2 f 3, finds
effective expression in the first total syntheses of a calm-
odulin inhibitor, radulanin A (13c) (Scheme 2), and heli-
anane (18) (Scheme 3). Thus, in the first of these, the readily
constructed 10a 9 was subjected to a DoM-transmetalation-
allylation sequence to give 11a , which upon acid-catalyzed
MOM ether cleavage and O-allylation gave diallylated
(1) (a) Ivin, K.
J Olefin Metathesis and Metathesis Polymerization;
Academic Press: San Diego, 1997. (b) Grubbs, R. J .; Miller, S. J .; Fu, G. C.
Acc. Chem. Res. 1995, 28, 446. (c) Schrock, R. R. Acc. Chem. Res. 1990, 23,
158. (d) Schmalz, H.-G. Angew. Chem., Int. Ed. Engl. 1995, 107, 1981. (e)
Buchmeiser, M. R.; Atzl, N.; Bonn, K. J . Am. Chem. Soc. 1997, 119, 9166.
(d) Review: Blechert, S.; Schuster, M. Angew. Chem., Int. Ed. Engl. 1997,
36, 2036.
(2) (a) Xu, Z.; J ohannes, C. W.; Houri, A. F.; La, D. S.; Cogan, D. A.;
Hofilena, G. E.; Hoveyda, A. H. J . Am. Chem. Soc. 1997, 119, 10302. (b)
Furstner, A.; Langemann, K. J . Am. Chem. Soc. 1997, 119, 9130. (c) Cossy,
J .; Meyer, C. Tetrahedron Lett. 1997, 38, 7861. (d) Grubbs, R. J .; Kirkland,
T. A. J . Org. Chem. 1997, 62, 7310. (e) Snapper, M. L.; Tallarico, J . A.;
Bonitatebus, P. J . J . Am. Chem. Soc. 1997, 119, 7157.
(3) (a) Nicolaou, K. C.; He, Y.; Vourloumis, H.; Vallberg, Z.; Yang, Z.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2554. (b) Danishefsky, S. J .;
Sorensen, E. J .; Balog, A.; Meng, D.; Kamenecka, T.; Bertinato, P.; Su, D.-
S. Angew. Chem., Int. Ed. Engl. 1996, 35, 2801.
(4) Snieckus, V. Chem. Rev. 1990, 90, 879. Snieckus, V. In Chemical
Synthesis Gnosis to Prognosis; Chatgilialoglu, C., Snieckus, V., Eds.; NATO
ASI Series, Series E: Applied Sciences; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 1996; Vol. 320, p 191. For a recent industrial
application, see: Larsen, R. D.; King, A. O.; Chen, C. Y.; Corley E. G.; Foster
B. S.; Roberts, F. E.; Yang, C; Lebermann, D. R.; Reamer, R. A.; Tschaen
R. M.; Verhoeven, T. R.; Rieder P. J .; Lo, Y. S.; Rossano, L. T.; Brookes, S.
A., Meloni, D.; Moore, J . R. Arnett, J . F. J . Org. Chem. 1994, 59, 6391.
(5) Asakawa, Y.; Toyota, M.; Takemoto, T. Phytochemistry 1978, 17, 2005.
(6) Crews, P.; Harrison, B. J . Org. Chem. 1997, 62, 2646.
(9) Compounds 10a and 10b were prepared from commercial 3,5-
dimethoxybenzaldehyde in four steps, 63% and 54% overall yields, respec-
tively, as follows: (1) PPh3CH2Ph/THF; (2) H2/Pd-C; (3) NaSEt/DMF; (4)
for 10a , MOMCl/NaOH(aq)/CH2Cl2/Bu4NHSO4; for 10b, ClCONEt2/K2CO3/
MeCN.
(10) Superchi, S.; Salvadori, P.; Pini, D. J . Organomet. Chem. 1993, 452,
14.
(11) Barghellini, G. Gazz. Chim. Ital. 1906, 36, 337. For use of this
reaction in a similar context, see: Grimm, E. L.; Trimble, L. A. Tetrahedron
Lett. 1994, 35, 6847.
(7) Compounds 4a -c were obtained from 3-methoxyphenol in four steps
as follows: (1) MOMCl/CH2Cl2/NaOH/Bu4NHSO4; (2) s-BuLi/TMEDA/THF
then MgBr2‚Et2O and allyl bromide; (3) HCl (aq)/THF/MeOH; (4) Cs2CO3/
DMF/CH2dCH(CH2)nBr (n ) 3, 6, and 8).
(8) Miller, S. J .; Kim, S.-H.; Chen, Z.-R.; Grubbs, R. H. J . Am. Chem.
Soc. 1995, 117, 2108.
S0022-3263(98)00299-0 CCC: $15.00 © 1998 American Chemical Society
Published on Web 04/11/1998