2400
Y. Aoyama et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2397±2401
Figure 2. Proposed mechanism for inhibition of human chymase by 1-oxacephem.
Table 4. Selectivity of 34 as an inhibitor of human chymase com-
pared to other serine proteases
3. He, S.; Gaca, M. D. A.; McEuen, A. R.; Walls, A. F. J.
Pharmacol. Exp. Ther. 1999, 291, 517.
4. Mizutani, H.; Schechter, N.; Lazarus, G.; Black, R. A.;
Kupper, T. S. J. Exp. Med. 1991, 174, 821.
Enzyme
IC50 (mM)
Enzyme
IC50 (mM)
5. Koord, M. W.; Schwartz, L. B.; Schechter, N. M.; Yager,
D. R.; Diegelmann, R. F.; Graham, M. F. J. Biol. Chem. 1997,
272, 7127.
6. Fang, K. C.; Raymond, W. W.; Blount, J. L.; Caughey, G.
H. J. Biol. Chem. 1997, 272, 25628.
Chymase
0.006
0.16
0.23
0.43
Trypsin
Elastase
Plasmin
0.44
>10
>10
a-Chymotrypsin
Cathepsin G
Thrombin
7. (a) Shiota, M.; Fukamizu, A.; Takai, S.; Okunishi, H.;
Murakami, K.; Miyazaki, M. J. Hypertens. 1997, 15, 431. (b)
Hamada, H.; Terai, M.; Kimura, H.; Hirano, K.; Oana, S.;
Niimi, H. Am. J. Respir. Crit. Care. Med. 1999, 160. 1303. (c)
Takai, S.; Yuda, A.; Jin, D.; Nishimoto, M.; Sakaguchi, M.;
Sasaki, S.; Miyazaki, M. FEBS Lett. 2000, 467, 141.
8. (a) Hayashi, Y.; Iijima, K.; Katada, J.; Kiso, Y. Bioorg.
Med. Chem. Lett. 2000, 10, 199. (b) Groutas, W. C.; Schech-
ter, N. M.; He, S.; Yu, H.; Huang, P.; Tu, J. Bioorg. Med.
Chem. Lett. 1999, 9, 2199. (c) Iijima, K.; Katada, J.; Hayashi,
Y. Bioorg. Med. Chem. Lett. 1999, 9, 413. (d) Fukami, H.;
Okunishi, H.; Miyazaki, M. Curr. Pharm. Des. 1998, 4. 439
and references therein.
abstraction of serine 195 by histidine 57 or the approach
of serine 195 to b-lactam carbonyl.17 Figure 2 depicts
the mechanism at work when the 30-substituent Z is a
good leaving group. According to Table 3, when 30-
substituent Z was not the leaving group (hydrogen, 27),
no activity was observed. This result supports the pro-
posed mechanism.
Considering the match±mismatch between 30, 4 and 7b-
substituents, several hybrid compounds were prepared
based on the results presented in Tables 1±3. For-
tunately, we found hybrid compound 34 to possess the
highest potency (IC50 6 nM) and to be 40-fold more
active than lead compound 1 (Scheme 2). In compound
34, the combination of substituents at 30, 4 and 7 posi-
tions may match synergetically. Enzymatic work
showed that 34 was an extremely selective inhibitor,
causing weak or no inhibition of several other serine
proteases (Table 4).18 In addition, the Na salt of 34
possessed water solubility (500 mg/mL). Consequently,
it was considered to be suitable for in vivo evaluation.
9. Lead compound 1 was prepared as follows: (a) (i) dihydro-
pyrane, TsOH, CH2Cl2; (ii) NaOH, acetone, 94% from 35; (b)
(i) POCl3, CH2Cl2; (ii) 2, pyridine; (iii) HCl±acetone, 76%
from 36.
10. Narisada, M.; Yoshida, T.; Onoue, H.; Ohtani, M.;
Okada, T.; Tsuji, T.; Kikkawa, I.; Haga, N.; Satoh, H.; Itani,
H.; Nagata, W. J. Med. Chem. 1979, 22, 757.
11. Uyeo, S.; Kikkawa, I.; Hamashima, Y.; Ona, H.; Nishi-
tani, Y.; Okada, K.; Kubota, T.; Ishikura, K.; Ide, Y.;
Nakano, K.; Nagata, W. J. Am. Chem. Soc. 1979, 101, 4403.
12. Yoshioka, M.; Tsuji, T.; Uyeo, S.; Yamamoto, S.; Aoki,
T.; Nishitani, Y.; Mori, S.; Satoh, H.; Hamada, Y.; Ishitobi,
H.; Nagata, W. Tetrahedron Lett. 1980, 351.
Conclusion
We have described here the synthesis of 1-oxacephem
derivatives and their inhibitory activities against human
chymase. We found that compound 34 possesses high
potency and selectivity against human chymase.
13. The human chymase assay was performed as follows: ®rst,
human chymase was puri®ed according to the method of
Takai (ref, Takai, S.; Siota, N.; Sakaguchi, M.; Muraguchi,
H.; Matsumura, E.; Miyazaki, M. Clin. Chim. Acta 1997,
265, 13). The puri®ed chymase was preincubated with test
compounds dissolved in DMSO at 37 ꢀC for 30 min in 0.1 M
Tris±HCl (pH 8.0) containing 1.8M NaCl, after then the chy-
mase reaction was started by adding succinyl-Ala-Ala-Pro-Phe-
p-nitroanilides (Sigma Chemical Co.). The change of absorbance
was measured at 405nm after 2 h incubation at 37ꢀC. The IC50
value was calculated from the inhibition of p-nitroaniline for-
mation at each concentration of the test compound.
Acknowledgement
We wish to thank Prof. M. Miyazaki, Osaka Medical
College, for the kind gift of human chymase.
14. Detailed data will be reported elsewhere.
References and Notes
15. Mascaretti, O. A.; Boschetti, C. E.; Danelon, G. O.; Mata,
E. G.; Roveri, O. A. Curr. Med. Chem. 1995, 1, 441 and
references therein.
16. See ref 8d with respect to the catalytic triad (Ser-195, His-
57, Asp-102) in human chymase.
1. (a) Caughey, G. H. J. Respir. Crit. Care Med. 1994, 150,
S138. (b) Wang, Z.; Walter, M.; Selwood, T.; Rubin, H.;
Schechter, N. M. Biol. Chem. 1998, 379, 167.
2. Ihara, M.; Urata, H.; Kinoshita, A.; Suzumiya, J.; Sasa-
guri, M.; Kikuchi, M.; Ideishi, M.; Arakawa, K. Hypertension
1999, 33, 1399.
17. Cephalosporin ester and amide sulfones were tested to
determine the structure±activity relationships for inhibition of