10.1002/anie.201812862
Angewandte Chemie International Edition
COMMUNICATION
[14] C. M. Lavoie, P. M. MacQueen, M. Stradiotto, Chem. Eur. J. 2016, 22,
18752.
such transformations involving (hetero)aryl chlorides was recently
published by our group,[29] whereby C4 was used as a pre-
catalyst at 110 ºC. The superiority of C6 (>95%) over C4 (15%) in
C-O cross-couplings at 60 ºC (Scheme 2C) leading to 8b
suggests that C6 might hold promise in effecting other demanding
catalytic transformations under mild conditions.
In conclusion, we have developed a new Ni pre-catalyst
(C6) containing an optimized ancillary ligand PhPAd-DalPhos
(L11) that enables the cross-coupling of ,,-trisubstituted
primary alkylamines and related hindered nucleophiles with
[15] a) J. Liu, D. Obando, V. Liao, T. Lifa, R. Codd, Eur. J. Med. Chem.
2011, 46, 1949; b) L. Wanka, K. Iqbal, P. R. Schreiner, Chem. Rev.
2013, 113, 3516; c) T. W. Johnson, R. A. Gallego, M. P. Edwards, J.
Med. Chem. 2018, 61, 6401.
[16] For select examples of other metal-mediated methods to form C-N
bonds using bulky, primary amines, see: a) A. M. Berman, J. S.
Johnson, J. Org. Chem. 2006, 71, 219; b) T. J. Barker, E. R. Jarvo,
Angew. Chem. Int. Ed. 2011, 50, 8325; c) M. Mailig, R. P. Rucker, G.
Lalic, Chem. Commun. 2015, 51, 11048; d) J. Gui, C.-M. Pan, Y. Jin, T.
Qin, J. C. Lo, B. J. Lee, S. H. Spergel, M. E. Mertzman, W. J. Pitts, T.
E. La Cruz, M. A. Schmidt, N. Darvatkar, S. R. Natarajan, P. S. Baran,
Science 2015, 348, 886.
(hetero)aryl
electrophiles,
including
chemoselective
transformations. In addition to representing the first Ni-catalyzed
C-N cross-couplings of this type whereby the substrate scope is
competitive with that achieved by use of state-of-the-art Pd
catalysts, the use of C6 allows for unprecedented room
temperature C-N cross-couplings of ,,-trisubstituted primary
alkylamines and (hetero)aryl chlorides to be achieved. We
envision that the application of tailored PAd-DalPhos ancillary
ligands will continue to prove effective in solving outstanding
problems in base metal catalysis, and will report on our studies in
this context in due course.
[17] P. Ruiz-Castillo, D. G. Blackmond, S. L. Buchwald, J. Am. Chem. Soc.
2015, 137, 3085.
[18] Y. Zhang, G. Lavigne, N. Lugan, V. César, Chem. Eur. J. 2017, 23,
13792.
[19] J. Jiang, H. Zhu, Y. Shen, T. Tu, Org. Chem. Front. 2014, 1, 1172.
[20] a) E. M. Wiensch, J. Montgomery, Angew. Chem. Int. Ed. 2018, 57,
11045; b) A. J. Nett, S. Cañellas, Y. Higuchi, M. T. Robo, J. M.
Kochkodan, M. T. Haynes, J. W. Kampf, J. Montgomery, ACS Catal.
2018, 8, 6606.
[21] C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou, D.
Bao, J. T. Starr, J. Chen, M. Yan, P. S. Baran, Angew. Chem. Int. Ed.
2017, 56, 13088.
[22] T. Harada, Y. Ueda, T. Iwai, M. Sawamura, Chem. Commun. 2018, 54,
1718.
Acknowledgements
[23] T. Iwai, T. Harada, H. Shimada, K. Asano, M. Sawamura, ACS Catal.
2017, 7, 1681.
We are grateful to the NSERC of Canada (Discovery Grant for
M.S.; CGS-D for P.M.Q.; USRA for E.V.E.), the Government of
Canada (Vanier CGS for J.P.T.), the Killam Trusts, and Dalhousie
University for their support of this work. Cytec (Solvay) is thanked
for the donation of phosphatrioxaadamantane. We also thank Dr.
Michael Lumsden and Mr. Xiao Feng (Dalhousie) for technical
assistance in the acquisition of NMR and MS data.
[24] N. Hazari, P. R. Melvin, M. M. Beromi, Nat. Rev. Chem. 2017, 1, 0025.
[25] a) N. H. Park, G. Teverovskiy, S. L. Buchwald, Org. Lett. 2014, 16, 220;
b) J. S. K. Clark, C. N. Voth, M. J. Ferguson, M. Stradiotto,
Organometallics 2017, 36, 679.
[26] Complete experimental details and characterization data are provided
in the Supporting Information; CCDC 1877193-1877194 contains the
supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
Centre.
Keywords: amination • bisphosphines • cross-coupling • ligand
[27] V. Snieckus, Chem. Rev. 1990, 90, 879.
design • nickel
[28] a) B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A.-M.
Resmerita, N. K. Garg, V. Percec, Chem. Rev. 2011, 111, 1346; b) B.-
J. Li, D.-G. Yu, C.-L. Sun, Z.-J. Shi, Chem. Eur. J. 2011, 17, 1728; c) M.
Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717; d) J. Schranck, P.
Furer, V. Hartmann, A. Tlili, Eur. J. Org. Chem. 2017, 3496; e) P. M.
MacQueen, M. Stradiotto, Synlett 2017, 28, 1652.
[1]
[2]
P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564.
J. D. Hayler, D. K. Leahy, E. M. Simmons, Organometallics 2019, DOI:
10.1021/acs.organomet.8b00566.
[3]
a) V. V. Grushin, H. Alper, Chem. Rev. 1994, 94, 1047; b) S. Z. Tasker,
E. A. Standley, T. F. Jamison, Nature 2014, 509, 299.
M. Marín, R. J. Rama, M. C. Nicasio, Chem. Rec. 2016, 16, 1819.
C. M. Lavoie, M. Stradiotto, ACS Catal. 2018, 8, 7228.
N. H. Park, G. Teverovskiy, S. L. Buchwald, Org. Lett. 2014, 16, 220.
S. Z. Ge, R. A. Green, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136,
1617.
[29] P. M. MacQueen, J. P. Tassone, C. Diaz, M. Stradiotto, J. Am. Chem.
Soc. 2018, 140, 5023.
[4]
[5]
[6]
[7]
[8]
[9]
V. Ritleng, M. Henrion, M. J. Chetcuti, ACS Catal. 2016, 6, 890.
J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534.
[10] D. S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed. 2008, 47, 6338.
[11] C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S. Sawatzky, A.
Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J.
Ferguson, M. Stradiotto, Nat. Commun. 2016, 7, 11073.
[12] C. M. Lavoie, R. McDonald, E. R. Johnson, M. Stradiotto, Adv. Synth.
Catal. 2017, 359, 2972.
[13] a) J. S. K. Clark, C. M. Lavoie, P. M. MacQueen, M. J. Ferguson, M.
Stradiotto, Organometallics 2016, 35, 3248; b) J. P. Tassone, P. M.
MacQueen, C. M. Lavoie, M. J. Ferguson, R. McDonald, M. Stradiotto,
ACS Catal. 2017, 7, 6048; c) J. S. K. Clark, R. T. McGuire, C. M.
Lavoie, M. J. Ferguson, M. Stradiotto, Organometallics 2019, DOI:
10.1021/acs.organomet.8b00451.
This article is protected by copyright. All rights reserved.