A. Brodzka et al. / Journal of Molecular Catalysis B: Enzymatic 82 (2012) 96–101
101
2.24 (s, 1H), 2.37–2.62 (m, 2H), 3.20–3.40 (m, 1H), 3.40–3.60 (m,
2H), 4.00–4.40 (m, 2H), 5.68 (s, 1H), 6.88–7.00 (m, 2H), 7.09–7.32
(m, 8H); 13C NMR (50 MHz, CDCl3): 36.6, 39.3, 39.4, 43.8, 44.2,
60.7, 127.0, 127.6, 127.7, 127.8, 128.9, 129.1, 138.2, 144.1, 172.0;
[˛]D = +1.9 (c = 1.5, CHCl3).
-158/09-01, part-financed by the European Union within the Euro-
pean Regional Development Fund.
References
[1] (a) M.C. Nunez, M.E. Garcia-Rubino, A. Conejo-Garcia, O. Cruz-Lopez, M.
Kimatrai, M.A. Gallo, A. Espinos, J.M. Campos, Curr. Med. Chem. 16 (2009)
2064–2074;
(b) R.N. Patel, Coord. Chem. Rev. 252 (2008) 659–701;
(c) H. Murakami, Top. Curr. Chem. 269 (2007) 273–299;
(d) R.N. Patel, Curr. Opin. Drug Discov. Dev. 9 (2006) 741–764;
(d) R.N. Patel, Curr. Org. Chem. 10 (2006) 1289–1321.
[2] T. Ito, L.E. Overman, J. Wang, J. Am. Chem. Soc. 132 (2010) 3272–3273.
[3] G.E. Tomkins, J.L. Jackson, P.G. O’Malley, E. Balden, J.E. Santoro, Am. J. Med. 11
(2001) 54.
[4] N.S. Mani, M. Wu, Tetrahedron: Asymmetry 11 (2000) 4687.
[5] D. Koszelewski, D. Clay, K. Faber, W. Kroutil, J. Mol. Catal. B: Enzym. 60 (2009)
191–194.
[6] E. Brown, C. Deroye, J. Touet, Tetrahedron: Asymmetry 9 (1998) 1605–1614.
[7] B.K. Park, M. Nakagawa, A. Hirota, A. Nakayama, J. Antibiot. (Tokyo) 41 (1998)
751–758.
[8] K. Mitsui, T. Sato, H. Urabe, F. Sato, Angew. Chem. Int. Ed. 43 (2004) 490–492.
[9] M. Gao, D. Wang, Q. Zheng, M. Wang, J. Org. Chem. 71 (2006) 9532–9535.
[10] (a) W. Szyman´ ski, R. Ostaszewski, Tetrahedron 64 (2008) 3197–3203;
(b) W. Szyman´ ski, M. Zwolin´ ska, R. Ostaszewski, Tetrahedron 63 (2007)
7647–7653;
(c) W. Szyman´ ski, R. Ostaszewski, Tetrahedron: Asymmetry 17 (2006)
2667–2671.
[11] D. Koszelewski, A. Redzej, R. Ostaszewski, J. Mol. Catal. B 47 (2007) 51–57.
[12] (a) A. Fryszkowska, M. Komar, D. Koszelewski, R. Ostaszewski, Tetrahedron:
Asymmetry 16 (2005) 2475–2485;
4.13. Synthesis of benzyl amide of
(+)-3-(4ꢀ-fluorophenyl)-4-bromopentanoic acid (5)
To the solution of benzyl amide of (+)-3-phenyl-5-
hydroxypentanoic acid (4) (0.53 mmol) in dry methylene chloride
(5 ml) triphenylphosphine (0.63 mmol) and tetrabromomethane
(0.64 mmol) were added. The mixture was stirring in room
temperature for 24 h. and the solvent excess was evaporated
under vacuum. The crude product was purified by silica gel flash
chromatography using hexane/ethyl acetate as an eluent (41%
yield); Elemental analysis: calcd. for C18H20NOBr: C, 62.44%, H,
5.82%, N, 4.05%, found: C, 62.38%, H, 5.99%, N, 4.03%; 1H NMR
(200 MHz, CDCl3): 2.12–2.42 (m, 2H), 2.48–2.72 (m, 2H), 3.12–3.55
(m, 3H), 5.59 (s, 1H), 6.98–7.12 (m, 2H), 7.21–7.44 (m, 8H); 13C
NMR (50 MHz, CDCl3): 36.6, 39.3, 39.4, 43.8, 44.2, 60.7, 127.0,
127.6, 127.7, 127.8, 128.9, 129.1, 138.2, 144.1, 172.0; [˛]D = +20.1
(c = 1.0, CHCl3).
4.14. Synthesis of N-benzyl-(R)-4-phenyl-2-piperidinone (6)
(b) A. Fryszkowska, M. Komar, D. Koszelewski, R. Ostaszewski, Tetrahedron:
Asymmetry 17 (2006) 961–966;
To the solution of benzyl amide of (+)-3-(4ꢀ-fluorophenyl)-
4-bromopentanoic acid (5) (0.15 mmol) in dry tetrahydrofunane
(10 ml) sodium hydroxide (0.30 mmol) was added and reaction
mixture was stirred in 85 ◦C for 24 h. After that methanol was added
(2 ml) and solvent excess evaporated under vacuum. The residue
was dissolved in water and extracted with ethyl acetate (3 × 15 ml).
The combined organic layers were dried over MgSO4, filtered and
concentrated under vacuum. The crude product was purified by
crystallization from hexane/ethyl acetate (89% yield).
Elemental analysis: calcd. for C18H19NO: C, 81.48%, H, 7.22%, N,
5.28%, found: C, 81.64%, H, 7.435%, N, 5.34%; 1H NMR (200 MHz,
CDCl3): 1.80–2.15 (m, 2H), 2.48–2.90 (m, 2H), 3.00–3.20 (m, 1H),
3.21–3.40 (m, 2H), 4.65 (dd, J = 15.0, 7.0 Hz, 2H), 7.10–7.40 (m, 10H);
13C NMR (50 MHz, CDCl3): 30.5, 38.9, 39.7, 46.6, 50.3, 126.7, 127.0,
127.7, 128.4, 128.8, 128.9, 137.3, 143.6, 169.5; [˛]D = +36.2 (c = 1.12,
CHCl3).
(c) J. Frelek, A. Fryszkowska, M. Kwit, R. Ostaszewski, Tetrahedron: Asymmetry
17 (2006) 2469–2478.
[13] F. Bermejo Gonzalez, P.A. Bartlett, Org. Synth. 64 (1986) 175.
[14] D. Basavaiah, ARKIVOC (2001) 70–82.
[15] P.S. Vankar, I. Bhattacharya, Y.D. Vankar, Tetrahedron: Asymmetry 7 (1996)
1683–1694.
[16] K. Kobata, K. Yoshikawa, M. Kohashi, T. Watanabe, Tetrahedron Lett. 37 (1996)
2789–2790.
[17] D. Basavaiah, P. Rama Krishna, T.K. Bharathi, Tetrahedron Lett. 30 (1990)
434–4348.
[18] J. Nie, H.-C. Guo, D. Cahard, J.-A. Ma, Chem. Rev. 111 (2011) 455–529.
[19] T. Miyazawa, M. Shimaoka, T. Yamada, Biotechnol. Lett. 21 (1999) 309.
[20] C.S. Chen, Y. Fujimoto, G. Girdaukas, C.J. Sih, J. Am. Chem. Soc. 104 (1982) 7294.
[21] J.I. Trujillo, A.S. Gopalan, Tetrahedron Lett. 34 (46) (1993) 7355–7358.
[22] M. Ito, A. Sakaguchi, C. Kobayashi, T. Ikariya, J. Am. Chem. Soc. 129 (2007)
290.
[23] T. Senda, M. Ogasawara, T. Hayashi, J. Org. Chem. 66 (2001) 6852.
[24] S. Brandau, A. Landa, J. Franzen, M. Marigo, K.A. Jorgensen, Angew. Chem. Int.
Ed. 45 (2006) 4305.
[25] A.L. Gutman, E. Meyer, X. Yue, C. Abell, Tetrahedron Lett. 33 (1992) 3943–4394.
[26] Meyers, R. Keith Smith, C.E. Whitten, J. Org. Chem. 44 (1979) 2250.
[27] R.E. Deasy, M. Brossat, T.S. Moody, A.R. Maguire, Tetrahedron: Asymmetry 22
(2011) 47–61.
[28] K. Adachi, S. Kobayashi, M. Ohno, Chimia 40 (1986) 317.
[29] G. Gilbert, B.F. Aycock, J. Org. Chem. 22 (1957) 1013.
[30] G. Heuger, S. Kalsow, R. Gottlich, Eur. J. Org. Chem. (2002) 1848.
[31] E. Vedejs, M. Gingras, J. Am. Chem. Soc. 116 (1994) 579.
Acknowledgments
This work was supported by project “Biotransformations for
pharmaceutical and cosmetics industry”, No. POIG.01.03.01-00