COMMUNICATIONS
[2] K. C. Nicolaou, Angew. Chem. 1993, 105, 1462 ± 1471; Angew. Chem.
Int. Ed. Engl. 1993, 32, 1377 ± 1385.
[3] P. Chen, Angew. Chem. 1996, 108, 1584 ± 1586; Angew. Chem. Int. Ed.
Engl. 1996, 35, 1478 ± 1480.
region in which the IR spectrum could not be recorded). The
1
only detectable IR band of [D4]1 in the region 700 ± 1500 cm
1
is predicted to fall at 774 cm and should belong to the b1u-
symmetric mode 9 (masked in the case of 1 by IR absorption
of other compounds, Table 1). This is in agreement with the
fact that the only IR band observed for [D4]1 in the region
[4] R. R. Jones, R. G. Bergman, J. Am. Chem. Soc. 1972, 94, 660 ± 661.
[5] R. G. Bergman, Acc. Chem. Res. 1973, 6, 25 ± 31.
[6] T. P. Lockhart, P. B. Comita, R. G. Bergman, J. Am. Chem. Soc. 1981,
103, 4082 ± 4090.
[7] W. R. Roth, H. Hopf, C. Horn, Chem. Ber. 1994, 127, 1765 ± 1779.
[8] R. S. Berry, J. Clardy, M. E. Schafer, Tetrahedron Lett. 1965, 15, 1003 ±
1010.
[9] I. P. Fisher, F. P. Lossing, J. Am. Chem. Soc. 1963, 85, 1018 ± 1019.
[10] O. L. Chapman, C. C. Chang, J. Kolc, J. Am. Chem. Soc. 1976, 98,
5703 ± 5705.
[11] P. G. Wenthold, J. A. Paulino, R. R. Squires, J. Am. Chem. Soc. 1991,
113, 7414 ± 7415.
[12] P. G. Wenthold, R. R. Squires, J. Am. Chem. Soc. 1994, 116, 6401 ±
6412.
[13] E. Kraka, D. Cremer, Chem. Phys. Lett. 1993, 216, 333 ± 340.
[14] E. Kraka, D. Cremer, J. Am. Chem. Soc. 1994, 116, 4929 ± 4936.
[15] J. Cramer, J. J. Nash, R. R. Squires, Chem. Phys. Lett., 1997, 277, 311 ±
320.
[16] a) J. Pacansky, J. Bargon, J. Am. Chem. Soc. 1975, 97, 6896 ± 6897;
b) J. Pacansky, W. Koch, M. D. Miller, ibid. 1991, 113, 317 ± 328.
[17] a) J. Pacansky, G. P. Gardini, J. Bargon, Ber. Bunsen-Ges. Phys. Chem.
1978, 82, 19 ± 20; b) J. Pacansky, J. S. Chang, D. W. Brown, Tetrahedron
1982, 38, 257 ± 260.
[18] J. G. Radziszewski, M. R. Nimlos, P. R. Winter, G. B. Ellison, J. Am.
Chem. Soc. 1996, 118, 7400 ± 7401.
[19] R. Marquardt, W. Sander, E. Kraka, Angew. Chem. 1996, 108, 825 ±
827; Angew. Chem. Int. Ed. Engl. 1996, 35, 746 ± 748.
[20] J. Pacansky, M. Dupuis, J. Am. Chem. Soc. 1982, 104, 415 ± 421.
[21] J. G. Radziszewski, unpublished results.
[22] ªVibrational and Electronic Energy Levels of Polyatomic Transient
Moleculesº: M. E. Jacox, J. Phys. Chem. Ref. Data Monogr. 1994, 3.
[23] Recorded ESR, UV/Vis, and IR absorption spectra are compatible
with expectations for the 4-iodophenyl radical. In addition, the
experimental IR spectrum is nicely reproduced by calculations at the
B3LYP level of theory. A full account of this work will be presented
elsewhere.
1
700 ± 1500 cm 1 is at 767 cm .
We were thus able to prepare in a matrix from two
precursors a thermolabile species with IR absorption at 435,
1
721/725, 976/980, 1207, and 1403 cm . These IR bands are in
agreement with calculated frequencies for p-benzyne (1). The
IR spectrum of [D4]1 is characterized by a single intense IR
1
1
absorption (767 cm ) between 700 and 1500 cm . The Berg-
man rearrangement is very rapid in the gas phase, and for this
reason 1 is converted completely into ring-opened enediyne
(Z)-2.
Experimental Section
General procedure for the synthesis of acyl peroxides: a solution of the acyl
chloride (5 mmol for the synthesis of 4, 10 mmol for 8) in CHCl3 (20 mL)
and pyridine (12 mmol in 20 mL of CHCl3) was added within one hour at
108C to a suspension of the corresponding peroxy- or diperoxyacid
(5 mmol) in CHCl3 (100 mL) and stirred at this temperature for 2 h. The
cold solution was filtered and washed with water (30 mL), 10% HCl
(30 mL), and a saturated solution of NaHCO3 (2 Â 30 mL). The CHCl3
solution was dried over Na2SO4, and solvent was removed in vacuo at 158C.
The peroxides were obtained in 40 ± 80% yield as crystalline material of
generally high purity and, if necessary, purified by preparative HPLC
(SiO2, CH2Cl2/CHCl3). Compounds 4a,[30] 8,[31] and 11[31] were identified by
comparison with literature data.
4b: M.p. 958C; IR (KBr): nÄ 3106 (vw), 2961 (vw), 1814 (w), 1814 (m),
1771 (vs), 1723 (vs), 1578 (w), 1503 (vw), 1440 (m), 1408 (m), 1368 (w), 1288
(vs), 1229 (s), 1154 (m), 1110 (s), 1034 (vs), 1010 (vs), 958 (vw), 894 (w), 870
(w), 836 (w), 823 (w), 787 (vw), 720 (vs), 668 (m), 643 (w), 584 cm (vw);
UV/Vis (EtOH): lmax (lge) 208 (3.45), 244 (4.12), 286 nm (3.16); 1H NMR
[24] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem.
Phys. Lett. 1989, 157, 479 ± 483.
[25] A. Becke, J. Chem. Phys. 1993, 98, 5648 ± 5652.
[26] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys.
Chem. 1993, 98, 11623 ± 11627.
(400 MHz, CDCl3): d 8.09 (dd, J 27.2, 8.4 Hz, 4 H), 3.93 (s, 3 H), 2.26 (s,
13
3 H); C NMR (400 MHz, CDCl3): d 166.0 (s, C O), 165.8 (s, C O),
162.2 (s, C O), 135.1 (s), 129.9 (d), 129.7 (d), 129.3 (s), 52.6 (q), 16.6 (q); MS
(70 eV): m/z (%): 238 (3) [M ], 207 (4), 180 (13), 164 (10), 163 (100), 149
[27] a) P. C. Hariharan, J. A. Pople, Chem. Phys. Lett. 1972, 16, 217 ± 219;
b) R. Krishnan, M. Frisch, J. A. Pople, J. Chem. Phys. 1980, 72, 4244 ±
4245.
(36), 135 (13), 121 (8), 104 (14), 103 (10), 77 (9), 76 (17), 75 (9), 65 (11), 50
(15), 45 (7), 44 (11), 43 (27), 39 (6), 28 (6); HR-MS: calcd for C11H10O6
238.0477, found 238.0472.
[28] J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, R. J. Bartlett,
ACES II, Quantum Theory Project, University of Florida, Gainesville,
FL (USA), 1992.
[29] M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B.
Schlegel, K. Raghavachari, M. A. Robb, J. S. Binkley, C. Gonzales,
D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J.
Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, J. A. Pople,
Gaussian 94, Gaussian Inc., Pittsburgh PA (USA), 1994.
[30] K. Rübsamen, W. P. Neumann, R. Sommer, U. Frommer, Chem. Ber.
1969, 102, 1290 ± 1298.
1
8: H NMR (200 MHz, CDCl3): d 8.11 (s, 4 H), 2.27 (s, 6 H); 13C NMR
(200 MHz, CDCl3): d 164.9, 160.8, 129.6, 129.0, 15.6; MS (70 eV): m/z
(%): 282 (2) [M ], 207 (87), 191 (5), 166 (15), 149 (100), 135 (9), 121 (16),
104 (53), 76 (31), 65 (20), 60 (17), 50 (32), 44 (60), 43 (95).
[D6]8: 1H NMR (200 MHz, CDCl3): d 8.11 (s); 13C NMR (200MHz,
CDCl3): d 164.9, 160.8, 129.6, 129.0, 15.6; MS (70 eV): m/z (%): 288 (1)
[M ], 210 (61), 194 (16), 166 (15), 149 (100), 138 (7), 121 (12), 104 (39), 76
(22), 65 (17), 63 (12), 50 (24), 46 (85), 44 (57).
[D4]8: 1H NMR (200 MHz, CDCl3): d 2.27 (s); 13C NMR (200 MHz,
[31] Y. A. Ol'dekop, G. S. Belina, M. S. Matveentseva, Zh. Org. Khim.
1986, 4, 585 ± 587.
CDCl3): d 164.9, 160.8, 129.6, 129.0, 15.6; MS (70 eV) m/z (%): 286 (3)
[M ], 211 (100), 170 (16), 153 (58), 139 (11), 125 (13), 108 (54), 80 (28), 69
(17), 60 (16), 52 (27), 44 (57), 43 (66).
Received: February 13, 1997
Revised version September 23, 1997 [Z10107IE]
German version: Angew. Chem. 1998, 110, 1001±1005
Keywords: ab initio calculations ´ density functional calcu-
lations ´ matrix isolation ´ photochemistry ´ radicals
[1] K. C. Nicolaou, W. M. Dai, Angew. Chem. 1991, 103, 1453 ± 1481;
Angew. Chem. Int. Ed. Engl. 1991, 30, 1387 ± 1416.
958
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3707-0958 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1998, 37, No. 7