10.1002/anie.201708533
Angewandte Chemie International Edition
COMMUNICATION
more sustainable when production on scale is considered.[33] In
addition, a continuous Br2 generator has also been designed
which produces elemental bromine from NaBrO3 and NaBr under
acidic conditions. Both generators can be employed
independently or coupled in series, as desired. We believe that
the in-situ on-demand BrCN generator concept introduced
herein will enable chemists from many different fields to now
safely use BrCN, a reagent that in recent years has been
virtually banned from the arsenal of synthetic chemistry. There
probably is a large number of “forbidden” and/or “forgotten”
reagents that can be safely generated and used in scalable
synthetic operations employing some of the concepts described
herein.
[8]
[9]
HN3: B. Gutmann, J.-P. Roduit, D. Roberge, C. O. Kappe, Angew.
Chem. Int. Ed. 2010, 49, 7101-71105; Angew. Chem. 2010, 122, 7255-
7259.
COCl2: S. Fuse, Y. Mifune, T. Takkahashi, Angew. Chem. Int. Ed. 2014,
53, 851-855; Angew. Chem. 20144, 126, 870-874.
[10] V. Kumar, Synlett 2005, 1638-16339.
[11] J. Morris, L. Kovács, K. Ohe, e--EROS Encycl. Reagents Org. Synth.
2015, 1-12.
[12] D. N. Deaton, A. M. Hassell, R. BB. McFadyen, A. B. Miller, L. R. Miller,
L. M. Shewchuk, F. X. Tavares, DD. H. Willard, L. L. Wright, Bioorg. Med.
Chem. Lett. 2005, 15, 1815-1819..
[13] R. Frei, A. S. Breitbach, H. E. Blaackwell, Angew. Chem. Int. Ed. 2012,
51, 5226-5229; Angew. Chem. 20012, 124, 5316-5319.
[14] D. Martin, M. Bauer, Org. Synth. 11983, 61, 35.
[15] a) R. Scholl, F. Kačer, Ber. Dtscchh. Chem. Ges. 1903, 36, 322-331; b)
P.-L. Compagnon, B. Grosjeann, Synthesis 1976, 448-449; c) K.
Okamoto, M. Watanabe, M. Murai, R. Hatano, K. Ohe, Chem. Commun.
2012, 48, 3127-3129.
Acknowledgements
[16] H. A. Hageman, Org. React. 19533, 7, 198-262.
[17] A. Machara, M. A. A. Endoma-Ariaas, I. Císařová, D. P. Cox, T. Hudlicky,
Eur. J. Org. Chem. 2016, 1500-15503.
The CC FLOW project (Austrian Research Promotion Agency
FFG No. 862766) is funded through the Austrian COMET
Program by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW) and by
the State of Styria (Styrian Funding Agency SFG).
[18] J. von Braun, P. Engelbertz, Berr.. Dtsch. Chem. Ges. 1923, 56, 1573-
1577.
[19] E. Gross, B. Witkop, J. Am. Chemm. Soc. 1961, 83, 1510-1511.
[20] M. Murai, R. Hatano, S. Kitabata, K. Ohe, Chem. Commun. 2011, 47,
2375-2377.
August 2017; b) W. E.Luttrell, J. CChem. Health Safety 2009, 16, 29‐30.
[22] BrCN LCLo (lethal concentratioon low): 92 ppm/10 min inhalation,
2017
Keywords: chemical generators • continuous flow • cyanogen
bromide • bromine • guanidines
[23] a) W. W. Hartmann, E. E. Dregger, Org. Synth. 1931, 11, 30; b) O.
Glemsner in Handbook of Preparraative Inorganic Chemistry, Vol. 1, 2nd
ed (Ed.: G. Brauer), Academic Preess, New York, 1963, pp. 665-666.
[24] A. Adamo, P. L. Heider, N. Weerranoppanant, K. F. Jensen, Ind. Eng.
Chem. Res. 2013, 52, 10802-108008.
[1]
a) M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C. Battilocchio, S.
V. Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45, 4892-4928; b) B.
Gutmann, C. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54,
6688-6728; Angew. Chem. 2015, 127, 6788-6832; c) N. Kockmann, P.
Thenée, C. Fleischer-Trebes, G. Laudadioc, T. Noël, React. Chem. Eng.
2017, 2, 258-280.
[25] V. Sans, L. Cronin, Chem. Soc. Rev. 2016, 45, 2032-2043.
[26] J. M. Bell, M. L. Buckley, J. Am. CChem. Soc. 1912, 34, 14-15.
[27] F. Saczewski, Ł. Balewski, Expeert Opin. Ther. Pat. 2009, 19, 1417-
1448.
[2]
[3]
[4]
P. Poechlauer, S. Braune, B. Dielemans, B. Kaptein, R. Obermueller, M.
Thathagar, Chim. Oggi/Chem. Today 2012, 30 (4), 51-54.
A. Singh, D.-H. Ko, N. Vishwakarma, S. Jang, K.-I. Min, D.-P. Kim, Nat.
Commun. 2016, 7, 10741.
[28] D. A. Thaisrivongs, S. P. Miller, C. Molinaro, Q. Chen, Z. J. Song, L.
Tan, L. Chen, W. Chen, A. Lekhhal, S. K. Pulicare, Y. Xu, Org. Lett.
2016, 18, 5780-5783.
Cl2: a) F. J. Strauss, D. Cantillo, J. Guerra, C. O. Kappe, React. Chem.
Eng. 2016, 1, 472-476; b) T. Fukuyama, M. Tokizane, A. Matsui, I. Ryu,
React. Chem. Eng. 2016, 1, 613-615; c) Y. Sharma, S. Moolya, R. A.
Joshi, A. A. Kulkarni, React. Chem. Eng. 2017, 2, 304-308;
a) ClN3: B. Leforestier, M. Vögtle, Synlett 2016, 27, 1957-1962; b) BrN3:
D. Cantillo, B. Gutmann, C. O. Kappe, Org. Biomol. Chem. 2016, 14,
853-857.
[29] B. P. Charrette, M. A. Boerneke, T. Hermann, ACS Chem. Biol. 2016,
11, 3263-3267.
[30] T. M. Wróbel, U. Kosikowska, A. A. Kaczor, S. Andrzejczuk, Z.
Karczmarzyk, W. Wysocki, Z. Urrbańczyk-Lipkowska, M. Morawiak, D.
Matosiuk, Molecules 2015, 20, 144761-14776.
[5]
[6]
August 2017.
accessed:
17
CH2N2: a) R. M. Maurya, C. P. Park, L. H. Lee, D.-P. Kim, Angew.
Chem. Int. Ed. 2011, 50, 5952-5955; Angew. Chem. 2011, 123, 6074-
6077; b) F. Mastronardi, B. Gutmann, C. O. Kappe, Org. Lett. 2013, 16,
5590-5593; c) D. Dallinger, V. D. Pinho, B. Gutmann, C. O. Kappe, J.
Org. Chem. 2016, 81, 5814-5823.
[32] This method is often used in analytical chemistry and KBrO3-KBr
mixtures of appropriate stoichiommetry are commercially available: D.
Diemente, J. Chem. Educ. 1991, 668, 932.
[33] D. S. Sholl, R. P. Lively, Nature 20016, 532, 435-437.
[7]
a) N2CHCO2Et: R. A. Maurya, K.-I. Min, D.-P. Kim, Green Chem. 2014,
16, 116-120; b) CF3CHN2: B. Pieber, C. O. Kappe, Org. Lett. 2016, 18,
1076-1079; c) CHF2CHN2: J. Britton, T. F. Jamison, Angew. Chem. Int.
Ed. 2017, 56, 8823-8827; Angew.Chem. 2017, 129, 8949-8953;
This article is protected by copyright. All rights reserved.