10.1002/cctc.202000662
ChemCatChem
COMMUNICATION
[12] S. Burck, D. Gudat, M. Nieger, W.-W. Du Mont, J. Am. Chem. Soc. 2006,
128, 3946-3955.
features of this transformation. The methodology is particularly
attractive as it showcases the unique properties of the 1,3,2-
diazaphospholenes whereby they are very potent nucleophiles,
yet displaying remarkably low basicity. As such, the reaction
proceeds without quenching by the acidic proton of the carboxylic
acid. The process can be rendered enantioselective. We will
dedicate future efforts towards developing new chiral
diazaphospholene catalysts capable of achieving improved levels
of enantioinduction.
[13] a) C. C. Chong, B. Rao, R. Kinjo, ACS Catal. 2017, 7, 5814-5819; b) J.
H. Reed, P. A. Donets, S. Miaskiewicz, N. Cramer, Angew. Chem. Int.
Ed. 2019, 58, 8893-8897.
[14] a) M. R. Adams, C. H. Tien, R. McDonald, A. W. H. Speed, Angew.
Chem. Int. Ed. 2017, 56, 16660-16663; b) S. Miaskiewicz, J. H. Reed, P.
A. Donets, C. C. Oliveira, N. Cramer, Angew. Chem. Int. Ed. 2018, 57,
4039-4042; c) T. Lundrigan, E. N. Welsh, T. Hynes, C.-H. Tien, M. R.
Adams, K. R. Roy, K. N. Robertson, A. W. H. Speed, J. Am. Chem. Soc.
2019, 141, 14083-14088.
[15] D. Gudat, A. Haghverdi, W. Hoffbauer, Magn. Reson. Chem. 2002, 40,
589-594.
Keywords: diazaphospholene • reduction • catalysis • molecular
hydride • nucleophilic
[16] J. Zhang, J.-D. Yang, J.-P. Cheng, Angew. Chem. Int. Ed. 2019, 58,
5983-5987.
[17] a) T. Y. Shen, Angew. Chem. Int. Ed. 1972, 11, 460-472; b) D. Lednicer,
L. A. Mitscher in The Organic Chemistry of Drug Synthesis Vol. 3, Wiley,
New York, 1984.
[1]
a) Handbook of Homogeneous Hydrogenation (Eds.: J. G. de Vries, C.
J. Elsevier), Wiley-VCH, Weinheim, 2006; b) Modern Reduction Methods
(Eds.: P. G. Andersson, I. J. Munslow), Wiley-VCH, Weinheim, 2008; c)
D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621; d) Homogeneous
Hydrogenation with Non-Precious Catalysts (Ed.: J. F. Teichert) Wiley-
VCH, Weinheim, 2019.
[18] For a review, see: S. Khumsubdee, K. Burgess, ACS Catal. 2013, 3, 237-
249.
[19] For selected examples using Rh, Ir, or Ru catalysts, see: a) W. S.
Knowles, M. J. Sabacky, B. D. Vineyard, D. J. Weinkauff, J. Am. Chem.
Soc. 1975, 97, 2567-2568; b) T. Ohta, H. Takaya, M. Kitamura, K. Nagai,
R. Noyori, J. Org. Chem. 1987, 52, 3174-3176; c) W. S. Knowles, Angew.
Chem. Int. Ed. 2002, 41, 1998-2007; d) R. Noyori, Angew. Chem. Int. Ed.
2002, 41, 2008-2022; e) M. J. Burk, P. D. de Koning, T. M. Grote, M. S.
Hoekstra, G. Hoge, R. A. Jennings, W. S. Kissel, T. V. Le, I. C. Lennon,
T. A. Mulhern, J. A. Ramsden, R. A. Wade, J. Org. Chem. 2003, 68,
5731-5734; f) D. M. Tellers, J. C. McWilliams, G. Humphrey, M. Journet,
L. DiMichele, J. Hinksmon, A. E. McKeown, T. Rosner, Y. Sun, R. D.
Tillyer, J. Am. Chem. Soc. 2006, 128, 17063-17073; g) S. Li; S.-F. Zhu,
C.-M. Zhang, S. Song, Q.-L. Zhou, J. Am. Chem. Soc. 2008, 130, 8584-
8585; h) S. Karlsson, H. Sörenson, S. M. Andersen, A. Cruz, P. Ryberg,
Org. Process Res. Dev. 2016, 20, 262-269; i) S.-F. Zhu, Q.-L. Zhou, Acc.
Chem. Res. 2017, 50, 988-1001.
[2]
[3]
X. Tan, H. Lv, X. Zhang in Science of Synthesis: Catalytic Reduction in
Organic Synthesis 1 (Ed.: J. G. de Vries), Thieme, Stuttgart, p 7.
S. Rendler, M. Oestreich, Angew. Chem. Int Ed. 2007, 46, 498-504 b) C.
Deutsch, N, Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 2916-2927;
c) A. V. Malkov, K. Lawson, Top. Organomet. Chem. 2016, 58, 207-220.
a) P. Cheruku, A. Paptchikhine, T. L. Church, P. G. Andersson, J. Am.
Chem. Soc. 2009, 131, 8285-8289; b) D. Rageot, D. Woodmansee, B.
Pugin, A. Pfaltz, Angew. Chem. Int. Ed. 2011, 50, 9598-9601; c) S. Kraft,
K. Ryan, R. B. Kargbo, J. Am. Chem. Soc. 2017, 139, 11630-11641; d)
J. Muzart, Eur. J. Org. Chem. 2015, 5693-5707; e) Q.-A. Chen, Z.-S. Ye,
Y. Duan, Y.-G. Zhou, Chem. Soc. Rev. 2013, 42, 497-511.
[4]
[5]
For examples using non-precious transition metals, see: a) W. S.
Mahoney, J. M. Stryker, J. Am. Chem. Soc. 1989, 111, 8818-8823; b) S.
Z. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 13794-
13807; c) R. J. Trovitch, E. Lobkovsky, E. Bill, P. J. Chirik,
Organometallics, 2008, 27, 1470-1478; d) M. R. Friedfeld, M. Shevlin, J.
M. Hoyt, S. W. Krska, M. T. Tudge, P. J. Chirik, Science, 2013, 342,
1076-1080; e) R. P. Yu, J. M. Darmon, C. Milsmann, G. W. Margulieux,
S. C. E. Stieber, S. DeBeer, P. J. Chirik, J. Am. Chem. Soc. 2013, 135,
13168-13184; f) P. J. Chirik, Acc. Chem. Res. 2015, 48, 1687-1695; g)
G. A. Filonenko, R. van Putten, E. J. M. Hensen, E. A. Pidko, Chem. Soc.
Rev. 2018, 47, 1459-1483; h) B. M. Zimmerman, S. C. K. Kobosil, J. F.
Teichert, Chem. Commun. 2019, 55, 2293-2296.
[20] For the use of non-precious transition metal catalysts, see: H. Zhong, M.
Shevlin, P. J. Chirik, J. Am. Chem. Soc. DOI: 10.1021/jacs.9b13876.
[21] a) Y. Zhou, J. S. Bandar, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc.
2018, 140, 606-609; b) D. Bézier, S. Park, M. Brookhart, Org. Lett. 2013,
15, 496-499.
[6]
a) M. Rueping, J. Dufour, F. R. Schoepke, Green Chem. 2011, 13, 1084-
1105; b) K. L. Hodge, J. E. Goldberger, J. Am. Chem. Soc. 2019, 141,
19969-19972; c) L. Longwitz, T. Werner, Angew. Chem. Int. Ed. 2020,
59, 2760-2763; d) Y. Nishiyama, Y. Makino, S. Hamanaka, A. Ogawa, N.
Sonoda, Bull. Chem. Soc. Jpn. 1989, 62, 1682-1684; e) J. W. Yang, M.
T. Hechavarria Fonseca, B. List, Angew. Chem. Int. Ed. 2004, 43, 6660-
6662; f) M. Sugiura, Y. Ashikari, Y. Takahashi, K. Yamaguchi, S. Kotani,
M. Nakajima, J. Org. Chem. 2019, 84, 11458-11473; g) X. Xia, Z. Lau,
P. H. Toy, Synlett, 2019, 30, 1100-1104.
[7]
[8]
Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions
and Applications (Ed.: P. I. Dalko), Wiley-VCH, Weinheim, 2013.
a) L. J. Hounjet, D. W. Stephan, Org. Process. Res. Dev. 2014, 18, 386-
391; b) D. J. Scott, M. J. Fuchter, A. E. Ashley, Chem. Soc. Rev. 2017,
46, 5689-5700; c) J. Paradies, Top. Organomet. Chem. 2018, 62, 193-
216.
[9]
C. Zheng, S.-L. You, Chem. Soc. Rev. 2012, 41, 2498-2518.
[10] a) D. Gudat, A. Haghverdi, M. Nieger, Angew. Chem. Int. Ed. 2000, 39,
3084-3086; b) D. Gudat, Dalton Trans. 2016, 45, 5896-5907; c) T.
Lundrigan, C.-H. Tien, K. N. Robertson, A. W. H. Speed, Chem.
Commun. 2020, DOI: 10.1039/D0CC01072C.
[11] a) C. C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 190-
194; b) M. R. Adams, C. H. Tien, B. S. N. Huchenski, M. J. Ferguson, A.
W. H. Speed, Angew. Chem. Int. Ed. 2017, 56, 6268-6271; c) B. Rao, C.
C. Chong, R. Kinjo, J. Am. Chem. Soc. 2018, 140, 652-656; d) T. Hynes,
E. N. Welsh, R. McDonald, M. J. Ferguson, A. W. H. Speed,
Organometallics 2018, 37, 841-844; e) C. C. Chong, H. Hirao, R. Kinjo,
Angew. Chem. Int. Ed. 2014, 53, 3342-3346; f) C. C. Chong, R. Kinjo,
Angew. Chem. Int. Ed. 2015, 54, 12116-12120.
This article is protected by copyright. All rights reserved.
4