Petrosaspongiolides M-R
J ournal of Natural Products, 1998, Vol. 61, No. 5 575
1
MeOH-H2O 80:20; 1H and 13C NMR, see text and Table
1; HREIMS m/z 418.2734 (M+; calcd for C25H38O5,
418.2719).
P etr osa sp on giolid e Q (4): white amorphous solid,
[R]D +5.8° (c 0.001, CH3OH); tR 14.0 min, eluting with
MeOH-H2O 70:30 (analytical column); 1H and 13C
NMR, see text and Table 2; HREIMS m/z 476.2787 (M+,
calcd for C27H40O7, 476.2774).
P etr osa sp on giolid e R (5): white amorphous solid,
[R]D -15.6° (c 0.003, CH3OH); UV (MeOH) λmax (log ꢀ)
264 (4.15); tR 3.8 min, eluting with MeOH-H2O 85:15;
1H and 13C NMR, see text and Table 1.
Aceta te 3e: For H NMR data (CDCl3), see acetate
1a .
Aceta te 3f: For 1H NMR data (CDCl3), see acetate
1b.
P h a r m a cologica l Assa ys. For pharmacolocical as-
says see R. Cholbi et al.15
Ack n ow led gm en t. This contribution is part of the
Marine Science and Technology (MAST-III) European
project named Bioactive Marine Natural Products in the
Field of Antitumoral, Antiviral, and Immunomodulant
Activity. Therefore, we thank the European Community
for financial support (contract MAS3-CT95-0032). We
wish to thank Prof. Vincenzo Amico (University of
Catania, Italy) for insightful suggestions and criticisms
to this work. We also thank the undergraduate student
Fabio Dell’Aquila for his kind collaboration. The work
of P. G. P., M. J . A. and M. P. was supported by the
grant SAF95-1046 (CICYT). NMR and MS spectra were
recorded at C.R.I.A.S. “Centro Interdipartimentale di
Analisi Strumentale”, Faculty of Pharmacy, University
of Naples “Federico II”.
Acetyla tion of P etr osa sp on giolid e M (1). A solu-
tion of petrosaspongiolide M (1, 6 mg) was kept in dry
pyridine (0.5 mL) and Ac2O (0.1 mL) with stirring at
room temperature for 12 h. After quenching with CH3-
OH, the excess reagents were removed under reduced
pressure to obtain a crude oil containing two products,
1a and 1b, which were separated by HPLC on diol Si
gel column (Phenomenex Spherex 5 diol), petroleum
ether-ethylic ether 80:20 as eluent, to obtain acetates
1a (3.9 mg) and 1b (2.4 mg).
1
Aceta te 1a : H NMR (CDCl3) δ 6.93 (1H, s, H-25),
6.12 (1H, br s, H-18), 6.07 (1H, d, J ) 4.0, H-24), 4.59
(1H, br d, H-16), 2.11 (3H, s, COCH3), 2.18 (3H, s,
COCH3), 0.87 (3H, s, Me-23), 0.86 (3H, s, Me-20), 0.86
(3H, s, Me-22), 0.84 (3H, s, Me-21).
Refer en ces a n d Notes
(1) (a) Crews, P.; Naylor, S. Prog. Chem. Org. Nat. Prod. 1985, 48,
203. (b) Hanson, J . R. Nat. Prod. Rep. 1986, 3, 123-132; Nat.
Prod. Rep. 1992, 9, 481-489; Nat. Prod. Rep. 1996,13, 529-
535. (c) Faulkner, D. J . Nat. Prod. Rep. 1996, 13, 75-125, and
earlier reviews cited therein.
1
Aceta te 1b: H NMR (CDCl3) δ 6.98 (1H, s, H-25),
6.05 (1H, br s, H-18), 5.93 (1H, d, J ) 4.0, H-24), 4.61
(1H, br dd, H-16), 2.12 (3H, s, COCH3), 2.10 (3H, s,
COCH3), 0.86 (3H, s, Me-23), 0.86 (3H, s, Me-22), 0.82
(3H, s, Me-20), 0.80 (3H, s, Me-21).
(2) de Silva, E. D.; Scheuer, P. J . Tetrahedron Lett. 1980, 21, 1611-
1612.
(3) (a) Glaser, K. B.; J acobs, R. S. Biochem. Pharm. 1986, 35, 449.
(b) Glaser, K. B.; J acobs, R. S. Biochem. Pharm. 1987, 36, 2079-
2086.
(4) Kernan, M. R.; Faulkner, D. J .; Parkanyi, L.; Clardy, J .; de
Carvalho, M. S.; J acobs, R. S. Experientia 1989, 45, 388-390.
(5) De Rosa, S.; De Stefano, S.; Zavodnik, N. J . Org. Chem. 1988,
53, 5020.
(6) (a) Glaser, K. B.; de Carvalho, M. S.; J acobs, R. S.; Kernan, M.
R.; Faulkner, D. J . Mol. Pharmacol. 1989, 36, 782-788. (b)
Albizati, K. F.; Holman, T.; Faulkner, D. J .; Glaser, K. B.; J acobs,
R. S. Experientia 1987, 43, 949.
(7) Potts, B. C. M.; Faulkner, D. J .; de Carvalho, M. S.; J acobs, R.
S. J . Am. Chem. Soc. 1992, 114, 5093-5100.
Acetyla tion of P etr osa sp on giolid e P (3). A solu-
tion of petrosaspongiolide P (3, 23.0 mg) was kept in
dry pyridine (1 mL) and Ac2O (0.4 mL) with stirring at
room temperature for 12 h. After quenching with CH3-
OH, the excess reagents were removed under reduced
pressure to obtain a crude oil containing two monoac-
etates, 3a and 3b, and four diasteromeric diacetates,
3c, 3d , 3e and 3f, which were separated by HPLC on
diol Si gel column (Phenomenex Spherex 5 diol), petro-
leum ether-ethylic ether 80:20 as eluent, to obtain
acetates 3a (1.5 mg), 3b (0.5 mg), 3c (12.0 mg), 3d (6.1
mg), 3e (1.9 mg), and 3f (0.3 mg). The monoacetates
3a and 3b (24 epimers) possess 24R* and 24S* configu-
rations, respectively. These compounds still have a
hemiacetal function at C-25, so the configuration at this
carbon cannot be assigned. As for the diacetates, each
pair of compounds (3c/3d and 3e/3f) contains deriva-
tives with configurations that are homogeneous at C-24
(24R* and 24S *, respectively) and epimeric at C-25.
Aceta te 3a : 1H NMR (CDCl3) δ 6.11 (1H, br s, H-25),
6.02 (1H, br s, H-18), 5.32 (1H, d, J ) 8.6, H-24), 4.45
(1H, br d, H-16), 2.13 (3H, s, COCH3), 0.85 (3H, s, Me-
21), 0.85 (3H, s, Me-23), 0.83 (3H, s, Me-22), 0.80 (3H,
s, Me-20).
(8) (a) Lal, A. R.; Cambie, R. C.; Rickard, C. E. F.; Bergquist, P. R.
Tetrahedron Lett. 1994, 35, 2603-2606. (b) Gomez-Paloma, L.;
Randazzo, A.; Minale, L.; Debitus, C.; Roussakis, C.; Tetrahedron
1997, 53, 10451-10458.
(9) Both 1H and 13C NMR spectra of 1 contained several broad
resonances, because of a slow interconversion of the two possible
C-25 epimers at an intermediate rate on the NMR time scale.
This behavior has been already observed for other related
compounds (see, for instance, Butler, M. S.; Capon, R. J . Aust.
J . Chem. 1992, 45, 1705). All 1H and 13C NMR assignments have
been confirmed through variable temperature NMR experiments
in pyridine-d5.
(10) De Rosa, S.; Crispino, A.; De Giulio, A.; Iodice, C.; Tommonaro,
G.; J . Nat. Prod. 1997, 60, 844-846.
(11) Fang, J . M.; Lang, C.I.; Chen, W. L. Cheng, Y. S. Phytochemistry
1991, 30, 2793-2795.
(12) The reader should note that, due to a difference in C. I. P.
priorities, opposite configurations at C-24 in compounds 1 (24R
acetoxy group) and 3 (24â hydroxyl group) lead to the same 24S*
stereochemical notation. Moreover, the presence in 3 of two
interconverting C-24 epimers (via the free aldehyde) was also
suggested from the spectral data of the diacetylated products
3c and 3e. A comparative 1H NMR analysis, in fact, revealed
that 3c and 3e were identical to the acetylated derivatives of
cavernosolide (the 24-epimer of 1) and 1, respectively.
(13) For instance, depending on how long the enzyme is preincubated
with the inhibitor, IC50 can vary as much as 1000 times.
Therefore, data are fully comparable only if produced under the
same experimental conditions.
Aceta te 3b: 1H NMR (CDCl3) δ 6.20 (1H, br s, H-25),
6.06 (1H, d, J ) 1.5, H-18), 6.01 (1H, d, J ) 4.0, H-24),
4,73 (1H, ddd, J ) 1.5, 1.5, 12.5, H-16), 2.10 (3H, s,
COCH3), 0.85 (3H, s, Me-20), 0.84 (3H, s, Me-22), 0.83
(3H, s, Me-23), 0.82 (3H, s, Me-21).
(14) He, H.; Kulanthaiavel, P.; Baker, B. J . Tetrahedron Lett. 1994,
35, 7189-7192.
(15) Cholbi, R.; Ferrandiz, M. L.; Terencio, C.; De Rosa, S.; Alcaraz,
M. J .; Paya, M. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1996,
354, 677-683.
1
Aceta te 3d : H NMR (CDCl3) δ 7.02 (1H, s, H-25),
6.02 (1H, br s, H-18), 5.22 (1H, d, J ) 8.7, H-24), 4.35
(1H, dd, J ) 11.4, 1.5, H-16), 2.13 (3H, s, COCH3), 2.10
(3H, s, COCH3), 0.86 (3H, s, Me-23), 0.86 (3H, s, Me-
20), 0.83 (3H, s, Me-22), 0.80 (3H, s, Me-21).
NP9704922