Organic Letters
Letter
(4) Frutos, R. P.; Wei, X.; Patel, N. D.; Tampone, T. G.; Mulder, J.
A.; Busacca, C. A.; Senanayake, C. H. J. Org. Chem. 2013, 78, 5800−
5803.
(5) (a) Gogsig, T. M.; Nielsen, D. U.; Lindhardt, A. T.; Skrydstrup,
T. Org. Lett. 2012, 14, 2536−2539. (b) Kotljarov, A.; Irgashev, R. A.;
Iaroshenko, V. O.; Sevenard, D. V.; Sosnovskikh, V. Y. Synthesis 2009,
3233−3242. (c) Iaroshenko, V. O.; Specowius, V.; Vlach, K.; Vilches-
Herrera, M.; Ostrovskyi, D.; Mkrtchyan, S.; Villinger, A.; Langer, P.
Tetrahedron 2011, 67, 5663−5677.
(6) For selected examples of condensations towards pyrimidines with
β-alkoxybutenones, see: (a) Bellur, E.; Langer, P. Tetrahedron 2006,
62, 5426−5434. (b) Flores, A. F. C.; Pizzuti, L.; Brondani, S.; Rossato,
M.; Zanatta, N.; Martins, M. A. P. J. Braz. Chem. Soc. 2007, 18, 1316−
1321. (c) Muller, K.; Schubert, A.; Jozak, T.; Ahrens-Botzong, A.;
Schuenemann, V.; Thiel, W. R. ChemCatChem 2011, 3, 887−892.
(7) For examples of rapid condensations which proceed by alternate
elimination mechanisms than those described in Scheme 2, see:
(a) Cernuchova, P.; Vo-Thanh, G.; Milata, V.; Loupy, A.; Jantova, S.;
Theiszova, M. Tetrahedron 2005, 61, 5379−5387. (b) Danagulyan, G.
G.; Mkrtchyan, A. D.; Sahakyan, L. G. Chemistry of Heterocyclic
Compounds; Springer: New York, NY, 2005; Vol. 41, pp 262−264.
(c) Zanatta, N.; Fantinel, L.; Lourega, R. V.; Bonacorso, H. G.;
Martins, M. A. P. Synthesis 2008, 358−362.
Figure 5. IR analysis for the treatment of benzamidine 1b with (red)
and without (black) sodium tert-butoxide (1.1 equiv) in the indicated
solvent at ambient temperature.
predominately the free base amidine with little observable
amidine anion. Accordingly, the amidine−alkoxide acid−base
equilibrium was solvent dependent wherein the amidine anion
necessary for the initial alkoxide elimination was strongly
favored in DMSO. Other solvent effects13,16 may also
contribute to the reaction rate differences, but the correlation
between the anion equilibria and reaction behavior reasonably
rationalizes the solvent effect on the rate of the pyrimidine
condensation.
In conclusion, the rate limiting aromatization within the
condensation approach toward pyrimdines utilizing amidines
and activated olefins was addressed to provide for a general and
rapid process. Employing polar aprotic solvents with an
alkoxide base provided a reaction wherein optimal yields were
obtained in DMSO. The process demonstrated a broad
tolerance toward the substrates and allowed the generation of
a diverse pyrimidine series. Mechanistic analysis on the acid−
base equilibrium between an alkoxide base and benzamidine
demonstrated a pronounced solvent effect wherein DMSO
strongly favors the amidine anion necessary to promote the
initial alkoxide elimination. Extension of factors to bias the
acid−base equilibria necessary for base promoted condensa-
tions should also facilitate other related heterocycle syntheses.
(8) (a) Katritzky, A. R.; Yousaf, T. I. Can. J. Chem. 1986, 64, 2087−
2093. (b) Kereselidze, J.; Kvaraia, M.; Pachulia, Z.; Zarkua, T. Bull.
Georg. Natl. Acad. Sci. 2011, 5, 69−72.
(9) For selected examples, see: (a) Luo, G.; Chen, L.; Poindexter, G.
S. Tetrahedron Lett. 2002, 43, 5739−5742. (b) El Latiff, F. M. A.;
Barsy, M. A.; Aref, A. M.; Sadek, K. U. Green Chem. 2002, 4, 196−198.
(c) Bagley, M. C.; Hughes, D. D.; Lubinu, M. C.; Merritt, E. A.;
Taylor, P. H.; Tomkinson, N. C. O. QSAR Comb. Sci. 2004, 23, 859−
867.
(10) Anderson, N. G. Practical Process Research & Development;
Academic Press: San Diego, 2000.
(11) Desrosiers, J.-N.; Kelly, C. B.; Fandrick, D. R.; Nummy, L.;
Campbell, S. J.; Wei, X.; Sarvestani, M.; Lee, H.; Sienkiewicz, A.;
Sanyal, S.; Zeng, X.; Grinberg, N.; Ma, S.; Song, J. J.; Senanayake, C.
H. Org. Lett. 2014, 16, 1724−1727.
(12) See Supporting Information for additional React-IR analyses,
intermediate characterization, optimization studies, and procedures.
(13) For selected references and examples, see: (a) Miller, J.; Parker,
A. J. J. Am. Chem. Soc. 1961, 83, 117−123. (b) Parker, A. J. Q. Rec.
Chem. Soc. 1962, 16, 163−187. (c) Wilson, S. R. Org. React. 1993, 43,
93−250. (d) Isanbor, C.; Babatunde, A. I. J. Phys. Org. Chem. 2009, 22,
1078−1085. (e) Ji, P.; Atherton, J. H.; Page, M. I. J. Org. Chem. 2011,
76, 3286−3295.
htm, accessed Mar. 24, 2014. (b) Olmstead, W. N.; Margolin, Z.;
Bordwell, F. G. J. Org. Chem. 1980, 45, 3295−3299.
(15) Bordwell, F. G.; Ji, G.-Z. J. Am. Chem. Soc. 1991, 113, 8398−
8401.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details including additional react-IR experiments,
1
copies of HPLC, H and 13C NMR spectra. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
(16) For selected references and citations within, see: (a) Humeres,
E.; Nunes, R. J.; Machado, V. G.; Gasques, M. D. G.; Machado, C. J.
Org. Chem. 2001, 66, 1163−1170. (b) McManus, S. P.; Somani, S.;
Harris, J. M.; McGill, R. A. J. Org. Chem. 2004, 69, 8865−8873.
The authors declare no competing financial interest.
REFERENCES
■
(1) (a) Lagoja, I. M. Chemistry & Biodiversity 2005, 2, 1−50.
(b) Zhao, L.; Ma, X.-D.; Chen, F.-E. Org. Process Res. Dev. 2012, 16,
57−60.
(2) Mah, R. Pyrimidine-Based Kinase Inhibitors in Cancer Chemo-
therapy. In Bioactive Heterocyclic Compound Classes; Dinges, J.,
Lamberth, C., Eds.; Wiley-VCH: Weinheim, 2012; pp 257−273.
(3) For selected recent examples, see: (a) Sasada, T.; Kobayashi, F.;
Sakai, N.; Konakahara, T. Org. Lett. 2009, 11, 2161−2164. (b) Gayon,
E.; Szymczyk, M.; Gerard, H.; Vrancken, E.; Campagne, J.-M. J. Org.
Chem. 2012, 77, 9205−9220. (c) Sedenkova, K. N.; Averina, E. B.;
Grishin, Y. K.; Kutateladze, A. G.; Rybakov, V. B.; Kuznetsova, T. S.;
Zefirov, N. S. J. Org. Chem. 2012, 77, 9893−9899. (d) Anderson, E. D.;
Boger, D. L. J. Am. Chem. Soc. 2011, 133, 12285−12292.
2837
dx.doi.org/10.1021/ol500886a | Org. Lett. 2014, 16, 2834−2837