10.1002/anie.201804249
Angewandte Chemie International Edition
COMMUNICATION
than the νav of 5-DAC[12d] and 6-DAC[25] complexes (2060 cm-1
Soc. 2017, 139, 4887-4893; (b) P. Chábera, Y. Liu, O. Prakash, E.
Thyrhaug, A. E. Nahhas, A. Honarfar, S. Essén, L. A. Fredin, T. C. B.
Harlang, K. S. Kjæ r, K. Handrup, F. Ericson, H. Tatsuno, K. Morgan, J.
Schnadt, L. Häggström, T. Ericsson, A. Sobkowiak, S. Lidin, P. Huang,
S. Styring, J. Uhlig, J. Bendix, R. Lomoth, V. Sundström, P. Persson, K.
Wärnmark, Nature 2017, 543, 695-699; (c) D. Di, A. S. Romanov, L.
Yang, J. M. Richter, J. P. H. Rivett, S. Jones, T. H. Thomas, M. Abdi
Jalebi, R. H. Friend, M. Linnolahti, M. Bochmann, D. Credgington,
Science 2017, 356, 159-163.
M. Melaimi, M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2010,
49, 8810-8849.
(a) S. Würtz, F. Glorius, Acc. Chem. Res. 2008, 41, 1523-1533; (b) Y.
Kim, Y. Kim, M. Y. Hur, E. Lee, J. Organomet. Chem. 2016, 820, 1-7.
CO
and 2045 cm-1) even though their electrophilicity is similar. The
result shows that the high nucleophilicity of 1 engenders an even
more electron-rich transition metal center than DAC.
In summary, we have successfully designed and synthesized
coumaraz-2-on-4-ylidene (1) precursors and their metal
complexes. Furthermore, their electronic properties could be fully
[8]
[9]
characterized by 77Se-NMR and νav measurement. Although
CO
their narrow HOMO-LUMO energy gap and low singlet triplet
transition energy prevents the isolation of 1 in solid form, the
solution of 1 could be generated in situ, leading to the synthesis
of small molecule adducts and even metal complexes. We expect
to be able to isolate the 1 using other strategies such as reductive
generation of free carbene[12f], which do not include any proton.[20]
Currently, such attempts are under investigation. We believe that
these new ambiphilic NHCs offer exciting new applications for
both small molecules’ activation and transition metal catalysis.
[10] (a) A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113,
361-363; (b) A. J. Arduengo, J. R. Goerlich, W. J. Marshall, J. Am. Chem.
Soc. 1995, 117, 11027-11028; (c) D. Martin, N. Lassauque, B.
Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2012, 51, 6172-6175.
[11] J. P. Moerdyk, D. Schilter, C. W. Bielawski, Acc. Chem. Res. 2016, 49,
1458-1468.
[12] (a) T. W. Hudnall, C. W. Bielawski, J. Am. Chem. Soc. 2009, 131, 16039-
16041; (b) T. W. Hudnall, J. P. Moerdyk, C. W. Bielawski, Chem.
Commun. 2010, 46, 4288-4290; (c) M. Braun, W. Frank, G. J. Reiss, C.
Ganter, Organometallics 2010, 29, 4418-4420; (d) M. Braun, W. Frank,
C. Ganter, Organometallics 2012, 31, 1927-1934; (e) M. G. Hobbs, T. D.
Forster, J. Borau-Garcia, C. J. Knapp, H. M. Tuononen, R. Roesler, New
J. Chem. 2010, 34, 1295-1308; (f) J. P. Moerdyk, C. W. Bielawski, Chem.
Commun. 2014, 50, 4551-4553; (g) T. W. Hudnall, A. G. Tennyson, C.
W. Bielawski, Organometallics 2010, 29, 4569-4578.
Acknowledgements
[13] (a) L. Benhamou, N. Vujkovic, V. César, H. Gornitzka, N. Lugan, G.
Lavigne, Organometallics 2010, 29, 2616-2630; (b) G. A. Blake, J. P.
Moerdyk, C. W. Bielawski, Organometallics 2012, 31, 3373-3378; (c) Z.
R. McCarty, D. N. Lastovickova, C. W. Bielawski, Chem. Commun. 2016,
52, 5447-5450.
[14] (a) M. Soleilhavoup, G. Bertrand, Acc. Chem. Res. 2015, 48, 256-266;
(b) M. Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Angew. Chem.
Int. Ed. 2017, 56, 10046-10068.
[15] (a) V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew.
Chem. Int. Ed. 2005, 44, 5705-5709; (b) J. Chu, D. Munz, R. Jazzar, M.
Melaimi, G. Bertrand, J. Am. Chem. Soc. 2016, 138, 7884-7887; (c) E.
Tomás-Mendivil, M. M. Hansmann, C. M. Weinstein, R. Jazzar, M.
Melaimi, G. Bertrand, J. Am. Chem. Soc. 2017, 139, 7753-7756.
[16] (a) R. Jazzar, J.-B. Bourg, R. D. Dewhurst, B. Donnadieu, G. Bertrand,
J. Org. Chem. 2007, 72, 3492-3499; (b) B. Rao, H. Tang, X. Zeng, L. Liu,
M. Melaimi, G. Bertrand, Angew. Chem. Int. Ed. 2015, 54, 14915-14919.
[17] (a) E. Despagnet-Ayoub, R. H. Grubbs, J. Am. Chem. Soc. 2004, 126,
10198-10199; (b) K. E. Krahulic, G. D. Enright, M. Parvez, R. Roesler, J.
Am. Chem. Soc. 2005, 127, 4142-4143; (c) C. Präsang, B. Donnadieu,
G. Bertrand, J. Am. Chem. Soc. 2005, 127, 10182-10183; (d) Y. Ishida,
B. Donnadieu, G. Bertrand, Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
13585-13588.
[18] Selected papers on the notable reactivities of cAAC via their electronic
structures; (a) V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller, G.
Bertrand, Angew. Chem. Int. Ed. 2006, 45, 3488-3491; (b) G. D. Frey, V.
Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, Science 2007, 316,
439-441.
[19] S. S. Batsanov, Inorg. Mater. 2001, 37, 871-885.
[20] R. W. Alder, M. E. Blake, L. Chaker, J. N. Harvey, F. Paolini, J. Schütz,
Angew. Chem. Int. Ed. 2004, 43, 5896-5911.
[21] S. Gomez-Bujedo, M. Alcarazo, C. Pichon, E. Alvarez, R. Fernandez, J.
M. Lassaletta, Chem. Commun. 2007, 1180-1182.
[22] X. Cattoën, D. Bourissou, G. Bertrand, Tetrahedron Lett. 2006, 47, 531-
534.
[23] (a) A. Liske, K. Verlinden, H. Buhl, K. Schaper, C. Ganter,
Organometallics 2013, 32, 5269-5272; (b) K. Verlinden, H. Buhl, W.
Frank, C. Ganter, Eur. J. Inorg. Chem. 2015, 2015, 2416-2425; (c) S. V.
C. Vummaleti, D. J. Nelson, A. Poater, A. Gomez-Suarez, D. B. Cordes,
A. M. Z. Slawin, S. P. Nolan, L. Cavallo, Chem. Sci. 2015, 6, 1895-1904.
[24] D. J. Nelson, S. P. Nolan, Chem. Soc. Rev. 2013, 42, 6723-6753.
[25] V. César, N. Lugan, G. Lavigne, Eur. J. Inorg. Chem. 2010, 2010, 361-
365.
This work was supported by Institute for Basic Science (IBS)
[IBSR007-D1] and a National Research Foundation of Korea
(NRF) grant funded by the Korean government [Ministry of
Science, ICT and Future Planning (MSIP)] (No. NRF-
2016H1A2A1907122 – Global Ph.D. Fellowship Program). The X-
ray crystallography analysis with synchrotron radiation was
performed at the Pohang Accelerator Laboratory (PLS-II BL2D
SMC beamline). We thank Dr. Gregory B. Boursalian and Dr.
Dmitry V. Yandulov for helpful discussions.
Keywords: Carbene ligand • Ligand design • Main group
elements • N-heterocyclic carbene • Transition metal complex
[1]
[2]
[3]
M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510,
485-496.
S. Roy, K. C. Mondal, H. W. Roesky, Acc. Chem. Res. 2016, 49, 357-
369.
(a) M. J. MacLeod, J. A. Johnson, J. Am. Chem. Soc. 2015, 137, 7974-
7977; (b) J. B. Ernst, C. Schwermann, G.-i. Yokota, M. Tada, S.
Muratsugu, N. L. Doltsinis, F. Glorius, J. Am. Chem. Soc. 2017, 139,
9144-9147; (c) C.-Y. Wu, W. J. Wolf, Y. Levartovsky, H. A. Bechtel, M.
C. Martin, F. D. Toste, E. Gross, Nature 2017, 541, 511-515.
(a) C. D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2013, 4, 3020-
3030; (b) Y. Wang, G. H. Robinson, Inorg. Chem. 2014, 53, 11815-11832.
For general review on NHC-based transition metal catalysis, see; (a) F.
Glorius, in Topics in Organometallic Chemistry, Vol. 21 (Ed.: F. Glorius),
Springer-Verlag Berlin Heidelberg, New York, 2007; (b) S. P. Nolan,
Wiley-VCH, New York, 2006.
[4]
[5]
[6]
[7]
Selected papers on the notable catalysis of NHC-transition metal
complexes; (a) A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y.
Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Nat. Commun.
2017, 8, 14874; (b) M. P. Wiesenfeldt, Z. Nairoukh, W. Li, F. Glorius,
Science 2017, 357, 908-912; (c) N. I. Saper, J. F. Hartwig, J. Am. Chem.
Soc. 2017, 139, 17667.
(a) H. Braunschweig, T. Dellermann, R. D. Dewhurst, B. Hupp, T. Kramer,
J. D. Mattock, J. Mies, A. K. Phukan, A. Steffen, A. Vargas, J. Am. Chem.
This article is protected by copyright. All rights reserved.