2124
J. Am. Chem. Soc. 2000, 122, 2124-2125
A Bis(µ-oxo)dicopper(III) Complex with Aromatic
Nitrogen Donors: Structural Characterization and
Reversible Conversion between Copper(I) and
Bis(µ-oxo)dicopper(III) Species
Hideki Hayashi,1a Shuhei Fujinami,1a Shigenori Nagatomo,1b
Seiji Ogo,1b Masatatsu Suzuki,*,1a Akira Uehara,1a
Yoshihito Watanabe,1b and Teizo Kitagawa1b
Department of Chemistry, Faculty of Science
Kanazawa UniVersity, Kakuma-machi
Kanazawa, Ishikawa 920-1192, Japan
Institute for Molecular Science
Myodaiji, Okazaki 444-8585, Japan
ReceiVed July 29, 1999
ReVised Manuscript ReceiVed December 16, 1999
Transformation of (µ-η2:η2-peroxo)dicopper(II) complexes
bearing sterically bulky tridentate N,N′,N′′-trisubstituted tacn2 to
square pyramidal bis(µ-oxo)dicopper(III) complexes has been
reported by Tolman et al.3 In certain instances, they have observed
a monooxygenase activity of the bis(µ-oxo)dicopper(III) com-
plexes for the coordinated ligand as substrate. A different type
of square planar bis(µ-oxo)dicopper(III) complexes having per-
alkylated-1,2-cyclohexanediamine ligands have been also prepared
by Stack et al.4 Very recently, partial formation of a bis(µ-oxo)-
dicopper(III) complex with a tridentate ligand containing two
pyridyl sidearms5 and a bis(µ-oxo)dicopper(III) complex with a
bidentate ligand containing a pyridyl group have been reported.6
However, there is no crystallographically characterized bis(µ-oxo)-
dicopper(III) complex having aromatic nitrogen donors. Thus, it
is important to explore how the nature of the donor atoms and
the stereochemistry of supporting ligands influence the formation,
structure, and reactivity of bis(µ-oxo)dicopper(III) complexes.
Karlin et al. have demonstrated that a copper(I) complex having
a tetradentate tripodal tpa ligand, [Cu(tpa)(NCCH3)]+, reacts with
O2 to form a trans-(µ-1,2-peroxo)dicopper(II) complex ([Cu2(O2)-
Figure 1. ORTEP view (50% probability) of the complex cation of
[Cu2(µ-O)2(Me2-tpa)2](PF6)2‚2(CH3)2CO (1b). Hydrogen atoms are omit-
ted for clarity. Selected bond distances (Å) and angles (deg): Cu-O1,
1.806(9); Cu-O1*, 1.799(8); Cu-N1, 1.97(1); Cu-N2, 1.91(1); Cu-
N3, 2.48(1); Cu-N4, 2.55(1); O1‚‚‚O1*, 2.32(1); Cu‚‚‚Cu*, 2.758(4);
Cu-O1-Cu*, 99.8(4); O1-Cu-O1*, 80.2(4).
378 nm ( ∼22 000, 0.1 mM), 494 nm (330, 10 mM)).8 Thus,
introduction of two 6-methylpyridyl groups into the tpa ligand
prevents the formation of trans-(µ-1,2-peroxo)dicopper(II) species
in a trigonal bipyramidal structure, probably due to a steric
requirement of two 6-methylpyridyl groups. However, it is
difficult to presume the structure of 1b from its electronic spec-
trum, since the spectral feature of 1b is somewhat different from
those of (µ-η2:η2-peroxo)dicopper(II)9 and bis(µ-oxo)dicopper-
(III) complexes.3,4 Herein, we report a crystal structure of a brown
bis(µ-oxo)dicopper(III) complex, [Cu2(O)2(Me2-tpa)2](PF6)2‚
2(CH3)2CO (1b) and reversible conversion between 1a and 1b.
Complex 1a has a trigonal pyramidal structure with three
pyridyl groups in the trigonal plane and tertiary amine in the
apex.10 Reaction of 1a with O2 in acetone/MeOH (10:1) at -78
°C gave a brown solution, from which brown crystals suitable
for X-ray crystallography were obtained.11 Figure 1 shows a
crystal structure of the complex cation of 1b which consists of a
centrosymmetric Cu2(µ-O)2 core with the Me2-tpa nitrogens. Each
copper ion has a square planar structure composed of a N2O2
donor set with two 6-methyl-2-pyridylmethyl sidearms which
interact weakly with each copper ion in the axial positions (2.48(1)
and 2.55(1) Å). The average Cu-O (1.803 Å) and Cu‚‚‚Cu*
(2.758(4) Å) distances are substantially shorter than those of bis-
(µ-hydroxo)dicopper(II) complex, [Cu2(OH)2(Me2-tpa)2](ClO4)2
(1c)10 (1.942 Å and 2.9368(9) Å, respectively), and are comparable
to those of bis(µ-oxo)dicopper(III) complexes, [Cu2(O)2(Bn3-
tacn)2]2+ (3; 1.806 and 2.794 Å)3a,c and [Cu2(O)2(LME)2]2+ (4;
1.806 and 2.743 Å).4 The resonance Raman spectrum of 1b
measured in acetone ( ∼10 mM) at -80 °C with 488.0 nm laser
excitation showed an isotope-sensitive band at 590 cm-1 with
16O2 (564 cm-1 with 18O2) shown in Figure 2 (inset), characteristic
of those observed for the bis(µ-oxo)dicopper(III) complexes.3c,4
(tpa)2]2+) in a trigonal bipyramidal structure (λmax (ꢀ, M-1 cm-1
)
) ∼440 nm (4000), 525 nm (11500), and ∼590 nm (7600)).7
Previously we found that [Cu(Me-tpa)]+ in acetone at -70 °C
generates a trans-(µ-1,2-peroxo)dicopper(II) species, whereas the
reaction of [Cu(Me2-tpa)]+ (1a) with O2 (Cu:O2 ) 2:1) in acetone
at -70 °C does not form a trans-(µ-1,2-peroxo)dicopper(II)
species, but produces a brown species (1b, λmax (ꢀ, M-1 cm-1) )
* Correspondence author. Telephone: +81-76-264-5701. Fax: +81-76-
(1) (a) Kanazawa University. (b) Institute for Molecular Science.
(2) Abbreviations of ligands used: tpa ) tris(2-pyridylmethyl)amine; Me-
tpa ) bis(2-pyridylmethyl)(6-methyl-2-pyridylmethyl)amine; Me2-tpa ) bis-
(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine; tacn ) 1,4,7-triazacyclo-
nonane; Bn3-tacn ) 1,4,7-tribenzyl-1,4,7-triazacyclononane; LME ) N,N′-
dimethyl-N,N′-diethyl-trans-(1R,2R)-cyclohexanediamine; HB(3,5-R2pz)3
hydrotris(3,5-dialkyl-1-pyrazolyl)borate.
)
(3) (a) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young,
V. G., Jr.; Que, L., Jr.; Zuberbu¨hler, A. D.; Tolman, W. B. Science 1996,
271, 1397-1400. (b) Mahapatra, S.; Halfen, J. A.; Tolman, W. B. J. Am.
Chem. Soc. 1996, 118, 11575-11586. (c) Mahapatra, S.; Halfen, J. A.;
Wilkinson, E. C.; Pan, G.; Wang, X.; Young, V. G., Jr.; Cramer, C. J.; Que,
L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 11555-11574. (d)
Tolman, W. B. Acc. Chem. Res. 1997, 30, 227-237. (e) Mahapatra, S.; Young,
V. G., Jr.; Kaderli, S.; Zuberbu¨hler, A. D.; Tolman, W. B. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 130-133.
(4) Mahadevan, V.; Hou, Z.; Cole, A. P.; Root, D. E.; Lal, T. K.; Solomon,
E. I.; Stack, T. D. P. J. Am. Chem. Soc. 1997, 119, 11996-11997
(5) (a) Obias, H. V.; Lin, Y.; Murthy, N. N.; Pidcock, E.; Solomon, E. I.;
Ralle, M.; Blackburn, N. J.; Neuhold, Y.-M.; Zuberbu¨hler, A. D.; Karlin, K.
D. J. Am. Chem. Soc. 1998, 120, 12960-12961. (b) Pidcock, E.; DeBeer, S.;
Obias, H. V.; Hedman, B.; Hodgson, K. O.; Karlin, K. D.; Solomon, E. I. J.
Am. Chem. Soc. 1999, 121, 1870-1878.
(8) Uozumi, K; Hayashi, Y; Suzuki, M; Uehara, A. Chem. Lett. 1993, 963-
966.
(9) (a) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto,
S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc.
1992, 114, 1277-1291; (b) Baldwin, M. J.; Root, D. E.; Pate, J. E.; Fujisawa,
K.; Kitajima, N.; Solomon, E. I. J. Am. Chem. Soc. 1992, 114, 10421-10431.
(10) Synthetic procedures, analytical data, and details for X-ray crystal-
lography for 1a-BPh4, 1b, and 1c are available as Supporting Information.
(11) Crystal data for 1b, [Cu2(O)2(Me2-tpa)2](PF6)2‚2(CH3)2CO, at -120
°C; monoclinic, P21/c (No. 14), a ) 11.426(5) Å, b ) 15.616(8) Å, c )
15.768(4) Å, â ) 107.05(2)°, V ) 2689(1) Å3, Z ) 2, R(Rw) ) 0.078 (0.107)
based on 1780 reflections (I > 3.00σ(I)) and 335 variable parameters.
(6) Holland, P. L.; Rodgers, K. R.; Tolman, W. B. Angew. Chem., Int. Ed.
1999, 38, 1139-1142.
(7) (a) Jacobson, R. R.; Tyekla´r, Z.; Farooq, A.; Karlin, K. D.; Liu. S;
Zubieta, J. J. Am. Chem. Soc. 1988, 110, 3690-3692. (d) Tyekla´r, Z.;
Jacobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta, J.; Karlin, K. D. J. Am.
Chem. Soc. 1993, 115, 2677-2689.
10.1021/ja992680f CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/18/2000