10.1002/asia.201900402
Chemistry - An Asian Journal
FULL PAPER
Conclusions
ZR2018JL008) and the China Postdoctoral Science Foundation
(2017M610442).
In conclusion, we have disclosed a mild and efficient tandem
reaction for the formation of new-type N-isopropenyl 1,2,3-
triazoles from safe and easy-to-handle reagents. This reaction
process involves in situ generation of explosive 2-azidopropenes
by artful cleavage of C(sp3)-OAr bond, which subsequently
participate in the click reaction for the unique 1,2,3-triazole
skeleton by eliminating tedious isolation. This one-pot protocol is
successfully achieved with broad substrate scope and good
functional-group compatibility and readily costeffective substrates.
This reaction enables an ideal and efficient strategy to convey
volatile 2-azidopropenes under mild reaction conditions for the
first time, which erases the explosive danger of vinyl azides to
furnish 1,2,3-triazole scaffolds. Their synthetic application has
been demonstrated by gram-scope reaction and secondary
modifications for useful molecules. Meanwhile, a possible
reaction pathway is tentatively proposed based on our preliminary
tests and previous literatures. Further applications will facilitate a
broad set of potential building blocks for the development of
pharmaceuticals and new materials.
Keywords: bimetal-catalyzed • vinyl azides • alkynes •1,2,3-
triazoles
[1]
[2]
[3]
a) H. M. L. Davies, J. S. Alforda, Chem. Soc. Rev. 2014, 43, 5151-5162;
b) D. Huang, P. Zhao, D. Astruc, Coordin. Chem. Rev. 2014, 272, 145-
165; c) S. Hosseyni, L. Wojtas, M. Li, X. Shi, J. Am. Chem. Soc. 2016,
138, 3994-3997; d) X. Ye, C. Xu, L. Wojtas, N. G. Akhmedov, H. Chen,
X. Shi, Org. Lett. 2016, 18, 2970-2973; e) A. Goitia, E. Gómez-Bengoa,
A. Correa, Org. Lett. 2017, 19, 962-965; f) Q. Gu, H. H. Al Mamari, K.
Graczyk, E. Diers, L. Ackermann, Angew. Chem. Int. Ed. 2014, 53, 3868-
2871.
a) B. L. Wilkinson, L. F. Bornaghi, T. A. Houston, Poulsen in Drug Design
Research Perspectives (Ed.: S. P. Kaplan), Nova, Haupauge, 2007, p.
57; (b) K. Kacprzak, I. Skiera, M. Piasecka, Z. Paryzek, Chem.
Rev. 2016, 116, 5689-5743; c) H. C. Kolb, K. B. Sharpless, Drug
Discovery Today, 2003, 8, 1128-1137; d) M. Whiting, J. C. Tripp, Y. C.
Lin, W. Lindstrom, A. J. Olson, J. H. Elder, K. B. Sharpless, V. V. Fokin,
J. Med. Chem. 2006, 49, 7697-7710; e) C. C. Chrovian, D. J. Gallacher,
A. Bhattacharya, M. A. Letavic, J. Med. Chem. 2018, 61, 207-223.
a) Y. Zheng, X. Ji, B. Yu, K. Ji, D. Gallo, E. Csizmadia, M. Zhu, M. R.
Choudhury, L. K. C. De La Cruz, V. Chittavong, Z. Pan, Z. Yuan, L. E.
Otterbein, B. Wang, Nat. Chem. 2018, 10, 787-794; b) V. K. Tiwari, B. B.
Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev. 2016
,
116, 3086-3240; c) W. G. Kim, B. Choi, H.-J. Yang, J.-A. Han, H. Jung,
H. Cho, S. Kang, S. Y. Hong, Bioconjugate Chem. 2016, 27, 2007-2013;
d) P. Thirumurugan, D. Matosiuk, K. Jozwiak, Chem. Rev. 2013, 113,
4905-4979; e) W. Tang, M. L. Becker, Chem. Soc. Rev. 2014, 43, 7013-
7039; f) H. Tian, A. Fürstenberg, T. Huber, Chem. Rev. 2017, 117, 186-
245; g) W. Gao, S. Li, Z. Liu, Y. Sun, W. Cao, L. Tong, G. Cui, B. Tang,
Experimental Section
Typical synthetic procedure for the synthesis 3 (with 3a as an
example): To a schlenk tube was added phenylacetylene (1a, 0.027 mL,
0.24 mmol), (2g, 82.4 mg, 0.2 mmol), NaBH4 (3.8 mg, 0.1mmol),
Pd(PPh3)4 (4.7 mg, 0.004 mmol) , CuI (1.5 mg, 0.008 mmol) ,CH3CN (1.5
mL) and Et3N (0.5 mL). Then the tube was charged with Ar (1 atm), and
was stirred at 60 oC (oil bath temperature) for the indicated time (about 4
h) until complete consumption of starting material as monitored by TLC.
The resulting reaction mixture was cooled to room temperature and taken
up by dichloromethane (3 × 15 mL). The organic layer was dried over
MgSO4, and concentrated under reduced pressure. The crude product was
further purified by flash column chromatography (silica gel) using
petroleum ether/ethyl acetate as an eluent and concentration in vacuo
afforded 3a in 91% yield.
Biomaterials 2017, 139, 1-11
.
[4]
a) M. G. Finn, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1221-1408; b) A.
S. Kumar, V. D. Ghule, S. Subrahmanyam, A. K. Sahoo, Chem.-Eur.
J. 2013, 19, 509-518; c) C. J. Hawker, V. V. Fokin, M. G. Finn, K. B.
Sharpless, Aust. J. Chem. 2007, 60, 381-383; d) C. Chu, R. Liu, Chem.
Soc. Rev. 2011, 40, 2177-2188; e) D. Astruc, L. Liang, A. Rapakousiou,
J. Ruiz, Acc. Chem. Res. 2012, 45, 630-640; f) P. Leophairatana, S.
Samanta, C. C. De Silva, J. T. Koberstein, J. Am. Chem. Soc. 2017, 139,
3756-3766.
[5]
[6]
N. G. Rogov, E. P. Kabanova, I. G. Gruzdeva, Ross. Khim. Zh. 1997, 41,
115-118.
Typical synthetic procedure for the synthesis 4 (with 4a as an
example): To a schlenk tube was added phenylacetylene (1a, 0.027 mL,
0.24 mmol), (2g, 82.4 mg, 0.2 mmol), morpholine (0.035 mL, 0.4 mmol),
Pd(PPh3)4 (4.7 mg, 0.004 mmol) , CuI (1.5 mg, 0.008 mmol) ,CH3CN (1.5
mL) and Et3N (0.5 mL). Then the tube was charged with Ar (1 atm), and
was stirred at 60 oC (oil bath temperature) for the indicated time (about 4
h) until complete consumption of starting material as monitored by TLC.
The resulting reaction mixture was cooled to room temperature and taken
up by dichloromethane (3 × 15 mL). The organic layer was dried over
MgSO4, and concentrated under reduced pressure. The crude product was
further purified by flash column chromatography (silica gel) using
petroleum ether/ethyl acetate as an eluent and concentration in vacuo
afforded 4a in 93% yield.
a) S. Beghdadi, I. A. Miladi, D. Addis, H. Ben Romdhane, J. Bernard, E.
Drockenmuller, Polym. Chem. 2012, 3, 1680-1692; b) E. V. Khavula, V.
A. Kuznetsov, V. N. Verezhnikov, G. V. Shatalov, Polym. Sci. Ser. B 2003,
45, 26-30; c) V. N. Kizhnyaev, F. A. Pokatilov, L. I. Vereshchagin, Polym.
Sci., Ser. C 2008, 50, 1-7; d) V. N. Kizhnyaev, N. A. Tsypina, A. I.
Smirnov, Polym. Sci., Ser. A 2003, 45, 735-741; e) N. A. Tsypina, V. N.
Kizhnyaev, F. A. Pokatilov, A. I. Smirnov, Polym. Sci., Ser. B 2003, 45,
41-47.
[7]
a) V. N. Kizhnyaev, F. A. Pokatilov, N. A. Tsypina, G. V. Ratovskii, L. I.
Vereshchagin, A. I. Smirnov, Russ. J. Org. Chem. 2002, 38, 1056-1059;
b) B. A. Trofimov, O. A. Tarasova, M. A. Shemetova, A. V. Afonin, L. V.
Klyba, L. V. Baikalova, A. I. Mikhaleva, Russ. J. Org. Chem. 2003, 39,
408-414; c) H. F. Duan, W. M. Yan, S. Sengupta, X. Shi, Bioorg. Med.
Chem. Lett. 2009, 19, 3899-3902; d) C. Sun, X. Yuan, Y. Li, X. Li, Z.
Zhao, Org. Biomol. Chem. 2017, 15, 2721-2724
.
[8]
[9]
a) G. Labbe, A. Hassner, J. Heterocycl. Chem. 1970, 7, 361-366; b) D.
B. Ramachary, J. Gujral, S. Peraka, G. S. Reddy, Eur. J. Org. Chem.
2017, 459-464; c) D. B. Ramachary, G. S. Reddy, S. Peraka, J. Gujral,
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21535004, 91753111, 21605097, 21775092,
21390411), and the Key Research and Development Program of
Shandong Province (2018YFJH0502), the Natural Science
Foundation of Shandong Province of China (ZR2016BQ01,
ChemCat Chem 2017, 9, 263-267
.
a) M. Kavitha, B. Mahipal, P. S. Mainkar, S. Chandrasekhar, Tetrahedron
Lett. 2011, 52, 1658-1662; b) L. Kupracz, J. Hartwig, J. Wegner, S.
Ceylan, A. Kirschning, Beilstein J. Org. Chem. 2011, 7, 1441-1448; c) G.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.